Assessment of rock slope stability by slope mass rating (SMR): A case study for the gas flare site in Assalouyeh, South of Iran

AZARAFZA, Mohammad
Akgün, Haluk
Slope mass rating (SMR) is commonly used for the geomechanical classification of rock masses in an attempt to evaluate the stability of slopes. SMR is calculated from the RMR89-basic (basic rock mass rating) and from the characteristic features of discontinuities, and may be applied to slope stability analysis as well as to slope support recommendations.


Fuzzy approach in preliminary design of weak rock slopes for lignite mines
Yardımcı, Ahmet Güneş; Karpuz, Celal; Department of Mining Engineering (2013)
Slope mass rating (SMR) system, which is an enhanced version of rock mass rating (RMR), is a useful tool to be utilized for the preliminary stability analysis of rock slopes. Parameter scoring systems of both conventional RMR and SMR systems are based on crisp set theory. Common problems of conventional classification systems are assigning sharp boundaries for ranges, the same values for both upper and lower limits of ranges and presence of uncertainties as a result of complex nature of rock. These problems...
Evaluating modes of failure zones of the rock masses along Mudurnu Valley (Turkey) by using a unmanned aerial vehicle
Arslan Kelam, Arzu; Akgün, Haluk (null; 2018-04-13)
Rock mass characteristics, slope geometry, weathering, man-made activities and seismic activities are the main factors that can cause slope failure. Whatever the reason is, these instabilities can generate significant hazards. Rock mass instabilities in the Mudurnu County which is settled on a steep valley threaten people and settlements, and lead to regional hazard and risk. In order to overcome this problem, rock masses along the valley have to be characterized in detail. Instabilities are discontinuity d...
Assessment of discontinuous rock slope stability with block theory and numerical modeling: a case study for the South Pars Gas Complex, Assalouyeh, Iran
AZARAFZA, Mohammad; ASGHARI-KALJAHI, Ebrahim; Akgün, Haluk (Springer Science and Business Media LLC, 2017-06-01)
In this study, a geotechnical model has been used to analyze the stability of a discontinuous rock slope. The main idea behind block theory is that it disregards many different combinations of discontinuities and directly identifies and considers critical rock blocks known as "key blocks". The rock slope used as a case study herein is situated in the sixth phase of the gas flare site of the South Pars Gas Complex, Assalouyeh, Iran. In order to analyze the stability of discontinuous rock slopes, geotechnical...
Assessment of slope stability for a segment (km: 25+600-26+000) of Antalya-Korkuteli highway
Arıkan, Huriye Aslı; Topal, Tamer; Department of Geological Engineering (2010)
The cut slopes at a segment between Km 25+600 and 26+000 of the Antalya-Burdur Breakaway-Korkuteli State Road to be newly constructed have slope instability problems due to the existence of highly jointed limestone. The purpose of this study is to investigate the engineering geological properties of the units exposed at three cut slopes, to assess stability of the cut slopes, and to recommend remedial measures for the problematic sections. In this respect, both field and laboratory studies have been carried...
Assessment of different topographic corrections in MODIS data for mapping effective snow covered areas in mountainous terrain
Akyürek, Sevda Zuhal (2008-06-05)
Topography and its derivatives (altitude, slope and aspect) have an effect on satellite-measured radiances. For mountainous areas the sun zenith and azimuth angles, as well as direction of observation relative to these are more limiting factors. In this paper four topographic normalization methods were used to correct the reflectance values of medium spatial resolution satellite data, namely MODIS. The performance of the topographic normalization methods is examined for snow covered areas of the study area ...
Citation Formats
M. AZARAFZA, H. Akgün, and E. ASGHARI-KALJAHI, “Assessment of rock slope stability by slope mass rating (SMR): A case study for the gas flare site in Assalouyeh, South of Iran,” GEOMECHANICS AND ENGINEERING, pp. 571–584, 2017, Accessed: 00, 2020. [Online]. Available: