Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Assessment of discontinuous rock slope stability with block theory and numerical modeling: a case study for the South Pars Gas Complex, Assalouyeh, Iran
Date
2017-06-01
Author
AZARAFZA, Mohammad
ASGHARI-KALJAHI, Ebrahim
Akgün, Haluk
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
205
views
0
downloads
Cite This
In this study, a geotechnical model has been used to analyze the stability of a discontinuous rock slope. The main idea behind block theory is that it disregards many different combinations of discontinuities and directly identifies and considers critical rock blocks known as "key blocks". The rock slope used as a case study herein is situated in the sixth phase of the gas flare site of the South Pars Gas Complex, Assalouyeh, Iran. In order to analyze the stability of discontinuous rock slopes, geotechnical modeling which was divided into geometrical sub-modeling and mechanical sub-modeling has been utilized. This model has been established upon the KGM (key-group method) algorithm which was based on the limit equilibrium method and block theory and prepared and coded by the Mathematica software. According to the results of the stability analysis, the analyzed slope was determined to be in the category of "needs attention," and the security level, calculated through the FORM (first-order reliability method) analysis, was estimated to be 1.16. In order to verify the model, the results obtained from the model were compared with those of the UDEC software, which is a numerical method based on distinct components. As a conclusion, it was determined that the results of the model agreed well with those of the numerical method.
Subject Keywords
Earth-Surface Processes
,
Soil Science
,
Global and Planetary Change
,
Geology
,
Pollution
,
Water Science and Technology
,
Environmental Chemistry
URI
https://hdl.handle.net/11511/46523
Journal
ENVIRONMENTAL EARTH SCIENCES
DOI
https://doi.org/10.1007/s12665-017-6711-9
Collections
Department of Geological Engineering, Article
Suggestions
OpenMETU
Core
Engineering geological characterization of the Antalya karstic rocks, southern Turkey
Sopacı, Evrim; Akgün, Haluk (Springer Science and Business Media LLC, 2016-03-01)
This study encompasses engineering geological characterization of the Antalya karstic foundation rocks, particularly tufa, whose mechanical behavior is highly variable. The Antalya tufa rock has no well-developed discontinuity systems. It is variably porous, and is composed of different rock types with variable structures. To reveal the engineering geological parameters and to develop a thorough engineering geological database, which is not available in the literature for the Antalya tufa rock, geological o...
Performance assessment of a bentonite-sand mixture for nuclear waste isolation at the potential Akkuyu Nuclear Waste Disposal Site, southern Turkey
Akgün, Haluk; Kockar, Mustafa Kerem (Springer Science and Business Media LLC, 2015-05-01)
This study assesses the geotechnical performance of a compacted bentonite-sand mixture with a bentonite content ranging from 15 to 30 % by weight to be used as a material component in a waste sealing system. Geotechnical laboratory tests such as compaction, falling head permeability, swelling, unconfined compression and shear strength tests were conducted to select an optimum mixture which eventually led to a recommendation to select an optimum bentonite-sand mixture possessing a bentonite content of 30 % f...
Modeling the response of top-down control exerted by gelatinous carnivores on the Black Sea pelagic food web
Oguz, T; Ducklow, HW; Purcell, JE; Malanotte-Rizzoli, P (American Geophysical Union (AGU), 2001-03-15)
Recent changes in structure and functioning of the interior Black Sea ecosystem are studied by a series of simulations using a one-dimensional, vertically resolved, coupled physical-biochemical model. The simulations are intended to provide a better understanding of how the pelagic food web structure responds to increasing grazing pressure by gelatinous carnivores (medusae Aurelia aurita and ctenophore Mnemiopsis leidyi) during the past 2 decades. The model is first shown to represent typical eutrophic ecos...
Assessment of slope stability for a segment (km: 25+600-26+000) of Antalya-Korkuteli highway
Arıkan, Huriye Aslı; Topal, Tamer; Department of Geological Engineering (2010)
The cut slopes at a segment between Km 25+600 and 26+000 of the Antalya-Burdur Breakaway-Korkuteli State Road to be newly constructed have slope instability problems due to the existence of highly jointed limestone. The purpose of this study is to investigate the engineering geological properties of the units exposed at three cut slopes, to assess stability of the cut slopes, and to recommend remedial measures for the problematic sections. In this respect, both field and laboratory studies have been carried...
Assessment of core-filter configuration performance of rock-fill dams under uncertainties
Çalamak, Melih; Yanmaz, Ali Melih (American Society of Civil Engineers (ASCE), 2018-04-01)
Probabilistic analyses are conducted for seepage through a rock-fill dam having two different core-filter configurations: one sloping and the other a central symmetrical core-filter arrangement. Uncertainties in core and filter are considered, assuming their hydraulic conductivities as random variables. For this purpose, finite-element software used for groundwater flow and seepage analyses is coupled with a random-number-generation algorithm. Monte Carlo simulations are performed for probabilistic seepage ...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
M. AZARAFZA, E. ASGHARI-KALJAHI, and H. Akgün, “Assessment of discontinuous rock slope stability with block theory and numerical modeling: a case study for the South Pars Gas Complex, Assalouyeh, Iran,”
ENVIRONMENTAL EARTH SCIENCES
, pp. 0–0, 2017, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/46523.