Object Detection with Convolutional Context Features

2017-01-01
Kaya, Emre Can
Alatan, Abdullah Aydın
A novel extension to Huh B-ESA object detection algorithm is proposed in order to learn convolutional context features for determining boundaries of objects better. For input images, the hypothesis windows and their context around those windows are learned through convolutional layers as two parallel networks. The resulting object and context feature maps are combined in such a way that they preserve their spatial relationship. The proposed algorithm is trained and evaluated on PASCAL VOC 2007 detection benchmark dataset and yielded improvements in performance over state-of-the-art, for almost all classes, especially the ones with distinctive context.

Suggestions

IMPROVING PROPOSAL-BASED OBJECT DETECTION USING CONVOLUTIONAL CONTEXT FEATURES
Kaya, Emre Can; Alatan, Abdullah Aydın (2018-10-10)
A novel extension to proposal-based detection is proposed in order to learn convolutional context features for determining boundaries of objects better. Objects and their context are aimed to be learned through parallel convolutional stages. The resulting object and context feature maps are combined in such a way that they preserve their spatial relationship. The proposed algorithm is trained and evaluated on PASCAL VOC 2007 detection benchmark dataset and yielded improvements in performance over baseline, ...
Rescoring detections based on contextual scores in object detection
Zorlu, Ersan Vural; Akbaş, Emre; Department of Computer Engineering (2019)
To detect objects in an image, current state-of-the-art object detectors firstly definecandidate object locations, and then classify each of them into one of the predefinedcategories or as background. They do so by using the visual features extracted locallyfrom the candidate locations; omitting the rich contextual information embedded inthe whole image. Contextual information can be utilized to complement the informa-tion extracted locally and thereby to improve object detection accuracy. Researchershave p...
OBJECT LOCALIZATION WITHOUT BOUNDING BOX INFORMATION USING GENERATIVE ADVERSARIAL REINFORCEMENT LEARNING
Halici, Eren; Alatan, Abdullah Aydın (2018-10-10)
Object localization can be defined as the task of finding the bounding boxes of objects in a scene. Most of the state-of-the-art approaches utilize meticulously handcrafted training datasets. In this work, we are aiming to create a generative adversarial reinforcement learning framework, which can work without having any explicit bounding box information. Instead of relying on bounding boxes, our framework uses tightly cropped object images as training data. Our image localization framework consists of two ...
Utilization of dense depth information for monoview object detection and instance segmentation
Çakırgöz, Çağlayan Can; Alatan, Abdullah Aydın; Department of Electrical and Electronics Engineering (2022-5-10)
Object detection aims for detecting objects of certain classes in an image by bounding them in rectangular boxes whereas instance segmentation tries to detect objects in pixel level. Deep learning techniques, which have shown great improvements over the last decade, are utilized in these topics as well, and a significant success is achieved against the traditional methods. Similar improvements can be observed in dense depth estimation which deals with deducing dense information of a scene from a single imag...
Object Orientation Detection And Character-Recognition Using Optimal Feedforward Network And Kohonen Feature Map
Baykal, Nazife (1992)
A neural network model, namely, Kohonen's Feature Map, together with the optimal feedforward network is used for variable font machine printed character recognition with tolerance to rotation, shift in position, and size errors. The determination of object orientation is found using the many rotated versions of individual symbols. Orientations are detected from printed text, but no knowledge of the context is used. The optimal Bayesian detector is derived, and it is shown that the optimal detector has the f...
Citation Formats
E. C. Kaya and A. A. Alatan, “Object Detection with Convolutional Context Features,” 2017, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/32884.