Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
IMPROVING PROPOSAL-BASED OBJECT DETECTION USING CONVOLUTIONAL CONTEXT FEATURES
Date
2018-10-10
Author
Kaya, Emre Can
Alatan, Abdullah Aydın
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
275
views
0
downloads
Cite This
A novel extension to proposal-based detection is proposed in order to learn convolutional context features for determining boundaries of objects better. Objects and their context are aimed to be learned through parallel convolutional stages. The resulting object and context feature maps are combined in such a way that they preserve their spatial relationship. The proposed algorithm is trained and evaluated on PASCAL VOC 2007 detection benchmark dataset and yielded improvements in performance over baseline, for all classes, especially the ones with distinctive context.
Subject Keywords
CNN
,
Region Proposal Network
,
Object detection
,
Context
,
Deep learning
URI
https://hdl.handle.net/11511/53076
Collections
Department of Electrical and Electronics Engineering, Conference / Seminar
Suggestions
OpenMETU
Core
Object Detection with Convolutional Context Features
Kaya, Emre Can; Alatan, Abdullah Aydın (2017-01-01)
A novel extension to Huh B-ESA object detection algorithm is proposed in order to learn convolutional context features for determining boundaries of objects better. For input images, the hypothesis windows and their context around those windows are learned through convolutional layers as two parallel networks. The resulting object and context feature maps are combined in such a way that they preserve their spatial relationship. The proposed algorithm is trained and evaluated on PASCAL VOC 2007 detection ben...
Rescoring detections based on contextual scores in object detection
Zorlu, Ersan Vural; Akbaş, Emre; Department of Computer Engineering (2019)
To detect objects in an image, current state-of-the-art object detectors firstly definecandidate object locations, and then classify each of them into one of the predefinedcategories or as background. They do so by using the visual features extracted locallyfrom the candidate locations; omitting the rich contextual information embedded inthe whole image. Contextual information can be utilized to complement the informa-tion extracted locally and thereby to improve object detection accuracy. Researchershave p...
Fine-grained object recognition and zero-shot learning in multispectral imagery
Sumbul, Gencer; Cinbiş, Ramazan Gökberk; AKSOY, SELİM (2018-05-05)
We present a method for fine-grained object recognition problem, that aims to recognize the type of an object among a large number of sub-categories, and zero-shot learning scenario on multispectral images. In order to establish a relation between seen classes and new unseen classes, a compatibility function between image features extracted from a convolutional neural network and auxiliary information of classes is learnt. Knowledge transfer for unseen classes is carried out by maximizing this function. Per...
Training object detectors by directly optimizing lrp metric
Çam, Barış Can; Akbaş, Emre; Kalkan, Sinan; Department of Computer Engineering (2020-9)
This thesis focuses on training deep object detection networks by directly optimizing the localisation-recall-precision (LRP) performance metric that can evaluate classification and localisation performance of an object detector in a unified manner (Oksuz et al., 2018). To achieve this goal, unlike the commonly used linear weighting approach, we aim to implicitly optimize the LRP metric first by using a bounded localisation loss from previous works and proposing a loss function that can bound the range ...
Enhanced Deep Learning with Improved Feature Subspace Separation
Parlaktuna, Mustafa; Sekmen, Ali; Koku, Ahmet Buğra; Abdul Malek, Ayad (2018-09-30)
This research proposes a new deep convolutional network architecture that improves the feature subspace separation. In training, the system considers M classes of input sets {C-i}(i=1)(M) and M deep convolutional networks {DNi}(i=1)(M) whose filter and other parameters are randomly initialized. For each input class C-i, Convolutional Neural Network generates a set of features F-i. Then, a local subspace S-i is matched for each set F-i. This is followed with a full training of the deep convolutional network ...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
E. C. Kaya and A. A. Alatan, “IMPROVING PROPOSAL-BASED OBJECT DETECTION USING CONVOLUTIONAL CONTEXT FEATURES,” 2018, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/53076.