Scrap tire ring as a low-cost post-tensioning material for masonry strengthening

2008-10-01
Load bearing walls of masonry type construction are weak in tension and wall failure in out-of-plane bending direction is one of the common failure mechanisms. Out-of-plane bending capacity and behavior can be greatly enhanced by post-tensioning. Developing countries commonly have poor and under educated population living in self-constructed masonry houses, which are at high risk if they are located on seismically active regions. Vast amounts of used tires, which contain steel-mesh and wires vulcanized with rubber coating, can be recycled as a structural strengthening material for post-tensioning masonry house walls. This study presents the behavior and capacity of scrap tire tread-rings (STRs) and rim-rings under direct tension. STR usage for post-tensioning is demonstrated on two full-scale strip wall test specimens made from hollow concrete bricks. STRs provided average of 133 kN force and 35 MPa stress capacities in tension which can be used for masonry wall post tensioning. The out-of-plane bending capacity of the two test walls increased about 5 times. STR usage with custom design connectors is a very promising alternative for low-cost masonry wall post-tensioning.
MATERIALS AND STRUCTURES

Suggestions

Performance improvement studies of masonry houses using elastic post-tensioning straps
Türer, Ahmet; KORKMAZ, HASAN HÜSNÜ (2007-04-25)
Unreinforced masonry houses are composed of building blocks with weak inter-binding action between them which commonly possess low tensile strength. The principal tensile stresses generated by out-of-plane bending and in-plane shear forces cannot be tolerated well and leads to heavy structural damage and brittle collapse beyond linear capacity of the material. Remedies such as externally applied mesh reinforcement and post-tensioning improves post and pre-cracking performances; however, yielding of reinforc...
Seismic strengthening of a mid-rise reinforced concrete frame using CFRPs: an application from real life
Tan, Mustafa Tümer; Özcebe, Güney; Department of Civil Engineering (2009)
FRP retrofitting allows the utilization of brick infill walls as lateral load resisting elements. This practical retrofit scheme is a strong alternative to strengthen low to mid-rise deficient reinforced concrete (RC) structures in Turkey. The advantages of the FRP applications, to name a few, are the speed of construction and elimination of the need for building evacuation during construction. In this retrofit scheme, infill walls are adopted to the existing frame system by using FRP tension ties anchored ...
Strengthening of reinforced concrete frames with engineered cementitious composite panels
Ayatar, Mehmet Engin; Canbay, Erdem; Binici, Barış (Thomas Telford Ltd., 2020-04-01)
Infill walls in reinforced concrete frames are susceptible to failure owing to their brittle nature. Their interaction with boundary columns during earthquakes may also cause shear damage in the columns. It is crucial to employ effective seismic strengthening strategies in order to mitigate the seismic risk induced by the infill walls. In this study, a new strengthening technique, conducted by bonding engineered cementitious composite (ECC) precast panels onto infill walls, was investigated. Three reinforce...
Mode I fracture toughness and tensile strength investigation on molded shotcrete brazilian specimen
Tayfuner, Tuğçe; Tutluoğlu, Levend; Department of Mining Engineering (2019)
Tensile opening mode I loading state is important for shotcrete-concrete type materials, since these are weak under tension. Brazilian type splitting tests are commonly used for checking the structural effectiveness of concrete in opening mode. Tensile strength is measured indirectly by these tests. In concrete industry, beam tests under three- and four-point bending loads are used to measure tensile strength and mode I fracture toughness of beams and columns under almost pure tensile loading state. However...
Quasi-static nonlinear seismic assessment of a fourth century A.D. Roman Aqueduct in Istanbul, Turkey
Gonen, Semih; Pulatsu, Bora; Erdogmus, Ece; Karaesmen, Engin; Karaesmen, Erhan (2021-01-01)
The majority of architectural heritage consists of load-bearing masonry components made up of stone units and relatively weak mortar joints, yielding potential weak planes for masonry structures where tension and shear failures are expected to occur. Advanced nonlinear analyses are required to simulate these phenomena and predict the corresponding nonlinear structural behavior of historic masonry constructions. In this context, this paper presents a model of a stone masonry Roman aqueduct (the Valens Aquedu...
Citation Formats
A. Türer, “Scrap tire ring as a low-cost post-tensioning material for masonry strengthening,” MATERIALS AND STRUCTURES, pp. 1345–1361, 2008, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/32964.