Show/Hide Menu
Hide/Show Apps
anonymousUser
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Açık Bilim Politikası
Açık Bilim Politikası
Frequently Asked Questions
Frequently Asked Questions
Browse
Browse
By Issue Date
By Issue Date
Authors
Authors
Titles
Titles
Subjects
Subjects
Communities & Collections
Communities & Collections
Performance improvement studies of masonry houses using elastic post-tensioning straps
Date
2007-04-25
Author
Türer, Ahmet
KORKMAZ, SERRA ZERRİN
KORKMAZ, HASAN HÜSNÜ
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
2
views
0
downloads
Unreinforced masonry houses are composed of building blocks with weak inter-binding action between them which commonly possess low tensile strength. The principal tensile stresses generated by out-of-plane bending and in-plane shear forces cannot be tolerated well and leads to heavy structural damage and brittle collapse beyond linear capacity of the material. Remedies such as externally applied mesh reinforcement and post-tensioning improves post and pre-cracking performances; however, yielding of reinforcement material or shortening of walls due to cracking causes loss of integrity and post-tensioning force. This paper discusses a research programme on earthquake strengthening of masonry houses using post-tensioning by elastomeric straps and related shaking table tests on 1/10 scale single storey rural dwelling models. The aim of the study is to assess the use and effectiveness of post-tensioning rubber straps at several different configurations especially for houses with heavy earth roofs supported on wooden logs. Full-scale application can be conducted using scrap automobile tyres, which might be implemented as an economic and environment friendly alternative strengthening technique for poor residents of low-cost dwellings. The performance and validity of the proposed strengthening techniques were tested on 1/10 scale models using a simplistic shaking table. The structural performance of the reinforced models with vertical post-tensioning rubber straps was significantly improved as compared to the original specimen; the results were even better when vertical and horizontal straps were used. Obtained results show promise for seismic strengthening using rubber straps for post-tensioning. Copyright (C) 2006 John Wiley & Sons, Ltd.
Subject Keywords
Rubber
,
Strengthening
,
Seismic
,
Masonry
,
Earthquake
URI
https://hdl.handle.net/11511/41119
Journal
EARTHQUAKE ENGINEERING & STRUCTURAL DYNAMICS
DOI
https://doi.org/10.1002/eqe.649
Collections
Department of Civil Engineering, Article