Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Effects of polymers and CMC concentration on rheological and fluid loss parameters of water-based drilling fluids
Date
2007-01-01
Author
Iscan, A. G.
Kök, Mustafa Verşan
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
216
views
0
downloads
Cite This
Fluid loss during drilling operations has a very significant effect on both reservoir formation damage and monetary terms. There are many additives to control this unwanted phenomenon. Nevertheless, most of these substances are artificial chemicals. Thus, they are not only expensive, but also hazardous to the environment. In this article, a more natural method was applied to overcome the higher filtration problems by employing carboxyl methyl cellulose (CMC) and polymers (XT), DSHV, and MAC PR. Drilling fluids were prepared due to American Petroleum Institute (API) standards. The fluid weights were adjusted as 9 ppg. API filtration tests were applied to fluid samples including the chemicals. Tests were also conducted with non-treated bentonites + barite fluids without chemicals for comparative purposes. All of the rheological parameters including plastic and apparent viscosity and yield points were determined. Comparative graphs of shear stress vs. shear rates were plotted. The optimum CMC and polymer amounts were selected by graphical analysis of the results of rheological tests made by using shear meter and filtration tests. An optimization of the fluid loss control due to addition of the chemicals was made. The behavior of water-based fluids with CMC and polymers was examined. The accurate and sensitive industrial application of this study would reduce drilling fluid loss expenditures effectively.
Subject Keywords
Drilling fluid
,
Fluid loss
,
Polymer
,
Rheology
URI
https://hdl.handle.net/11511/33200
Journal
ENERGY SOURCES PART A-RECOVERY UTILIZATION AND ENVIRONMENTAL EFFECTS
DOI
https://doi.org/10.1080/00908310600713966
Collections
Department of Petroleum and Natural Gas Engineering, Article
Suggestions
OpenMETU
Core
Effect of Polymers on the Rheological Properties of KCl Polymer Type Drilling Fluid
Kök, Mustafa Verşan (2005-05-01)
In the course of this research, the effect of two polymers (xanthan gum and polyanionic cellulose) on the rheological properties of KCl/polymer type drilling fluids was investigated. Non-Newtonian drilling fluids are conventionally characterized by rheological models (Bingham Plastic, Power Law, Casson, Herchel-Bulkley and Robertson-Stiff). In this research, forty-five KCl/polymer data sets of varying compositions are prepared. Polymer addition to the system has affected the model and caused a variation of ...
Effects of walnut shells on the rheological properties of water-based drilling fluids
Iscan, A.G.; Kök, Mustafa Verşan (2007-08-01)
In this research, three different water-based drilling fluids were prepared according to American Petroleum Institute (API) standards, and effects of walnut shells on the rheological properties of the samples were studied. The walnut shells of 2-, 4-, and 6-mm samples and their equal weight mixtures of 2-4 mm and 4 6 mm were added to the drilling fluid samples in different concentrations. The aim of this study is to determine the optimum walnut shell size, concentration and polymer concentration to minimize...
Effects of silica nanoparticles on the performance of water-based drilling fluids
Kök, Mustafa Verşan; Bal, Berk (2019-09-01)
In this research, two groups of experiments were conducted to investigate the effects of silica (SiO2) nanoparticles on the filtration and rheological properties of water-based drilling fluids. In the first group, bentonite, chrome-free lignosulfonate (CFL) and carboxymethyl cellulose (CMC) were used in different concentrations to obtain base fluids. Nanofluids were prepared by adding 0.5 g of four different silica nanoparticles into these drilling fluids. Comparison of rheological properties, fluid loss am...
Effects of nanoparticles on the performance of drilling fluids
Bal, Berk; Kök, Mustafa Verşan; Gücüyener, İsmail Hakkı; Department of Petroleum and Natural Gas Engineering (2017)
In this master thesis, effects of nanoparticles on the filtration and rheological properties of water-based drilling fluids are experimentally investigated. Four different silica nanoparticles are added into the lignosulfonate and bentonite based drilling fluids. By using data obtained at the end of this research, filtration and rheological properties of nanofluids are analyzed and compared with the base fluids at different temperatures. Two groups of experiments are conducted in this research. In the first...
Modeling and Experimental Study of Newtonian Fluid Flow in Annulus
SORGUN, Mehmet; Ozbayoglu, M. Evren; Aydın, İsmail (2010-09-01)
A major concern in drilling operations is the proper determination of frictional pressure loss in order to select a mud pump and avoid any serious problems. In this study, a mechanistic model is proposed for predicting the frictional pressure losses of light drilling fluid, which can be used for concentric annuli. The experimental data that were available in the literature and conducted at the Middle East Technical University-Petroleum Engineering (METU-PETE) flow loop as well as computational fluid dynamic...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
A. G. Iscan and M. V. Kök, “Effects of polymers and CMC concentration on rheological and fluid loss parameters of water-based drilling fluids,”
ENERGY SOURCES PART A-RECOVERY UTILIZATION AND ENVIRONMENTAL EFFECTS
, pp. 939–949, 2007, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/33200.