Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Improved design procedure for double-ridged waveguides
Date
2002-11-01
Author
Prakash, VVS
Mittra, R
Kuzuoğlu, Mustafa
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
195
views
0
downloads
Cite This
This article presents a novel methodology for designing double-ridged waveguides by numerically optimizing their geometric shape such that they sustain the two prescribed lowest order modes. The field solution to the problem is obtained by using the finite element method. The performance of the microgenetic algorithm and the quasi-Newton methods is studied for carrying out geometry optimization. This generalized formulation is capable of handling inhomogeneous material fillings in the guide, and computational results are presented to demonstrate the versatility of the proposed technique. (C) 2002 Wiley Periodicals, Inc.
Subject Keywords
Ridged waveguide
,
Optimization
,
Finite element method
,
Eigenvalue
,
Arnoldi process
URI
https://hdl.handle.net/11511/33303
Journal
INTERNATIONAL JOURNAL OF RF AND MICROWAVE COMPUTER-AIDED ENGINEERING
DOI
https://doi.org/10.1002/mmce.10053
Collections
Department of Electrical and Electronics Engineering, Article
Suggestions
OpenMETU
Core
Questioning Degree of Accuracy Offered by the Spectral Element Method in Computational Electromagnetics
Mahariq, I.; KURT, HAMZA; Kuzuoğlu, Mustafa (2015-07-01)
In this paper, a comparison amongst the spectral element method (SEM), the finite difference method (FDM), and the first-order finite element method (FEM) is presented. For the sake of consistency, the comparison is carried out on one-dimensional and two-dimensional boundary value problems based on the same measure of error in order to emphasize on the high accuracy gained by the SEM. Then, the deterioration in the accuracy of the SEM due to the elemental deformation is demonstrated. Following this, we try ...
Excessive Memory Usage of the ELLPACK Sparse Matrix Storage Scheme throughout the Finite Element Computations
Akinci, Gokay; YILMAZ, ASIM EGEMEN; Kuzuoğlu, Mustafa (2014-12-01)
Sparse matrices are occasionally encountered during solution of various problems by means of numerical methods, particularly the finite element method ELLPACK sparse matrix storage scheme, one of the most widely used methods due to its implementation ease, is investigated in this study. The scheme uses excessive memory due to its definition. For the conventional finite element method, where the node elements are used, the excessive memory caused by redundant entries in the ELLPACK sparse matrix storage sche...
Comparison of linear and quadratic hexahedral edge elements in electromagnetic scattering problems
Yılmaz, Ayşen; Kuzuoğlu, Mustafa (2008-01-01)
In this article, performances of linear and quadratic hexahedral edge elements are compared in the context of electromagnetic scattering problems. The de-facto standard of 0.1 lambda element size for linear elements is taken as a basis; and 0.3 to 0.4 lambda-size quadratic element usage is proposed for a better accuracy level with dramatic reduction in computation time and 7 memory. The proposed scheme is applied to some well-known practical problems. (c) 2007 Elsevier GmbH. All rights reserved.
Optimization of design parameter for tonpilz type transducers
Çiçek, Merve; Çalışkan, Mehmet; Department of Mechanical Engineering (2014)
Design of a Tonpilz type transducer is a complex process involving many design parameters which may affect each other. Therefore, an optimum design is a difficult task to reach. The purpose of this study is to optimize design parameters of Tonpilz type transducers. The study involves three different transducer modeling techniques. Each of these models is explained and benchmarked with the help of published experimental data. The simplest model is exploited to produce initial data for unknown design paramete...
Accurate equivalent models of sandwich laminates with honeycomb core and composite face sheets via optimization involving modal behavior
Cinar, Okan; Erdal Erdoğmuş, Merve; Kayran, Altan (2017-03-01)
An approach is introduced for determining accurate two-dimensional equivalent laminated models of sandwich laminates with honeycomb core and composite facesheets by optimization involving modal behavior. The approach relies on minimizing the objective function which is defined as the sum of the square of the differences between the natural frequencies of the honeycomb sandwich laminate estimated by the finite element analysis of the 3D detailed model with the actual honeycomb core geometry and by the 2D equ...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
V. Prakash, R. Mittra, and M. Kuzuoğlu, “Improved design procedure for double-ridged waveguides,”
INTERNATIONAL JOURNAL OF RF AND MICROWAVE COMPUTER-AIDED ENGINEERING
, pp. 530–539, 2002, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/33303.