Effects of current density, coating thickness, temperature, pH and particle concentration on internal stress during Ni-MoS2 electrocodeposition

2014-02-01
Guler, E. Saraloglu
Karakaya, İshak
KONCA, ERKAN
Internal stress in plated deposits has been a common problem that may affect the functionality of coatings. Electrodeposition parameters and insoluble particles modify the characteristics and the level of internal stress of coatings. The influence of the electrocodeposition parameters and their interaction effects on the internal stress during the electrodeposition of Ni and Ni-MoS2 composite coatings were studied by fractional factorial design. The parameters studied and their ranges were: MoS2 particle concentration (0-10 g L-1), temperature (30-50 degrees C), pH (2-4), current density (1.2-4.8 A dm(-2)), and coating thickness (25-50 mu m). MoS2 addition into Watts bath resulted in the decrease in the tensile internal stress values or even changed the stress character from tensile to compressive. Moreover, low stress values were obtained when pH was 2 and coating thickness was 50 mu m.
SURFACE ENGINEERING

Suggestions

Determination of Internal Stress of Ni Electroplated Samples in Sulphamate Solutions
Aykac, B.; Erdogan, M.; Karakaya, İshak (2017-06-01)
Internal stress is a common problem affecting the functionality of the electroplated materials. The parameters of electrodeposition and additive materials that are soluble in the bath change the characteristics of the plating and affect the internal stress of the coatings. The influence of the electrodeposition parameters on the internal stress of Ni deposits from the nickel sulphamate baths were studied by the help of fractional factorial design. The parameters included temperature, pH, current density and...
Dynamic strain aging of dual phase steels in forming applications
Bayramin, Berkay; Efe, Mert; Department of Metallurgical and Materials Engineering (2017)
Sheet metals are subjected to certain temperatures (25-200oC) and strain rates (1-10 s-1) during forming applications. These thermomechanical conditions may cause dynamic strain aging (DSA) in various grades of steels including dual phase (DP) steels. DSA represent itself as serrations in the stress-strain curves. Two grades of DP steels (DP590 and DP800) were studied systematically at different strain rates (10-3s-1-1s-1) and temperatures (25oC-400oC) to investigate the DSA effects on the mechanical proper...
The Effect of retained austenite and carbide distribution on the wear resistance of bearing steel
Özgeneci, Zeren; Ögel, Bilgehan; Department of Metallurgical and Materials Engineering (2017)
This study aims to investigate the effect of the amount of retained austenite and undissolved carbides on the wear resistance of the heat treated bearing steels. As inner and outer ring material 100Cr6 steel grade was used. The specimens were austenitized in the range 800°C to 1000°C, and then, quenched to room temperature in oil to produce a hard martensitic phase. A composite microstructure of undissolved carbides, martensite and retained austenite were observed in hardened steel specimens. It was seen th...
Effect of retrogression and reaging heat treatment on corrosion fatigue crack growth behavior of AA7050 alloy
Akgün, Nevzat; Gürbüz, Rıza; Department of Metallurgical and Materials Engineering (2004)
The effect of retrogression and reaging heat treatment on corrosion fatigue crack growth behavior on AA7050 T73651 aluminum alloy is investigated. CT (Compact Tension) specimens are prepared in LS direction for fatigue crack growth tests . Samples are solution heat treated at 477 °C and aged at 120 °C for 24 h (T6 condition). After that, samples are retrogressed at 200 °C for times of 1, 5, 30, 55 and 80 minutes in a circulating oil bath. Then, samples are re-aged at 120 °C for 24 h (T6 condition). Hardness...
Effect of cold rolling and annealing parameters on the microstructure and mechanical properties of dual phase steels
Poyraz, Okan; Ögel, Bilgehan; Department of Metallurgical and Materials Engineering (2020)
This study consists of change in the microstructure and mechanical properties of the 0.14C-1.98Mn steel with different cold rolling ratios, annealing temperature and annealing time. The starting sheet metal is 2.8mm thick and have a microstructure of ferrite-pearlite in as-received condition. Samples are cold rolled such that either 30%, 45% or 60% cold rolling is achieved. In order to see the change in microstructure below and in the intercritical temperatures, samples are annealed for 5 minutes or 10 minu...
Citation Formats
E. S. Guler, İ. Karakaya, and E. KONCA, “Effects of current density, coating thickness, temperature, pH and particle concentration on internal stress during Ni-MoS2 electrocodeposition,” SURFACE ENGINEERING, pp. 109–114, 2014, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/33325.