Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Thermal convection in the presence of a vertical magnetic field
Date
2007-11-01
Author
Guray, E.
Tarman, H. I.
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
234
views
0
downloads
Cite This
The interaction between thermal convection and an external uniform magnetic field in the vertical is numerically simulated within a computational domain of a horizontally periodic convective box between upper and lower rigid plates. The numerical technique is based on a spectral element method developed earlier to simulate natural thermal convection. In this work, it is extended to a magnetoconvection problem. Its main features are the use of rescaled Legendre-Lagrangian polynomial interpolants in expanding the flow variables except the pressure for which a modal expansion in terms of lower order polynomials is used to avoid the complicated staggered grid approach. The technique is validated in the steady roll and oscillatory convective regimes where various experimental and numerical results are available in the literature. The effect of a vertical magnetic field in such a way to inhibit the convective motions has been demonstrated.
Subject Keywords
Mechanical Engineering
,
Computational Mechanics
URI
https://hdl.handle.net/11511/66053
Journal
ACTA MECHANICA
DOI
https://doi.org/10.1007/s00707-007-0492-2
Collections
Department of Engineering Sciences, Article
Suggestions
OpenMETU
Core
ELASTIC-PLASTIC DEFORMATION OF A CENTRALLY HEATED CYLINDER
ORCAN, Y; GAMER, U (Springer Science and Business Media LLC, 1991-01-01)
Subject of the investigation is the deformation of a perfectly plastic cylinder with uniform temperature inside its cylindrical core and zero surface temperature. The calculation is based on Tresca's yield condition and the flow rule associated to it. For small radii of the hot core. a plastic region appears at the center and expands towards the surface of the cylinder with increasing core temperature. The other possibility is that, depending on the core radius, two plastic regions form one after the other ...
MAGNETOHYDRODYNAMIC FLOW IN ELECTRODYNAMICALLY COUPLED RECTANGULAR DUCTS
Tezer, Münevver (Wiley, 1988-06-01)
In Sezgin1,2 the problems considered are the magnetohydrodynamic (MHD) flows in an electrodynamically conducting infinite channel and in a rectangular duct respectively, in the presence of an applied magnetic field. In the present paper we extend the solution procedure of these papers to two rectangular channels connected by a barrier which is partially conductor and partially insulator. The problem has been reduced to the solution of a pair of dual series equations and then to the solution of a Fredholm's ...
Analytical solution to the bending of a nonlinearly hardening wide curved bar
Arslan, Eray; Eraslan, Ahmet Nedim (Springer Science and Business Media LLC, 2010-02-01)
An analytical solution to the partially plastic deformation of a nonlinearly hardening wide curved bar is derived. The bar considered has a narrow rectangular cross-section and is under pure bending. The analytical treatment is based on Tresca's yield criterion, its associated flow rule and a Swift-type nonlinear hardening law. Taking numerical limits, the complete solution is verified in comparison to the linear hardening solution available in the literature.
BOUNDARY-ELEMENT METHOD SOLUTION OF MHD FLOW IN A RECTANGULAR DUCT
Tezer, Münevver (Wiley, 1994-05-30)
The magnetohydrodynamic (MHD) flow of an incompressible, viscous, electrically conducting fluid in a rectangular duct with an external magnetic field applied transverse to the flow has been investigated. The walls parallel to the applied magnetic field are conducting while the other two walls which are perpendicular to the field are insulators. The boundary element method (BEM) with constant elements has been used to cast the problem into the form of an integral equation over the boundary and to obtain a sy...
On the plane strain and plane stress solutions of functionally graded rotating solid shaft and solid disk problems
Eraslan, Ahmet Nedim (Springer Science and Business Media LLC, 2006-01-01)
Closed form solutions to functionally graded rotating solid shaft and rotating solid disk problems are obtained under generalized plane strain and plane stress assumptions, respectively. The nonhomogeneity in the material arises from the fact that the modulus of elasticity of the material varies radially according to two different continuously nonlinear forms: exponential and parabolic. Both forms contain two material parameters and lead to finite values of the modulus of elasticity at the center. Analytica...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
E. Guray and H. I. Tarman, “Thermal convection in the presence of a vertical magnetic field,”
ACTA MECHANICA
, pp. 33–46, 2007, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/66053.