Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
An integrated thermopile structure with high responsivity using any standard CMOS process
Date
1998-04-01
Author
Akın, Tayfun
Akar, Orhan
Külah, Haluk
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
87
views
0
downloads
Cite This
This paper reports a new thermopile structure using n-poly/p(+)-active layers that are available in any CMOS technology. The thermopile structures are obtained by post-etching of the fabricated and bonded chips. P+-active layers are placed in n-well regions, which are protected from etching by the electrochemical etch-stop technique in a TMAH solution. The n-well regions are then removed using a short EDP etching to reduce the thermal conductivity of the suspended structures, improving the responsivity significantly. The characterization results show that Seebeck coefficients of the n-poly and p(+)-active layers are -320 +/- 15 and 430 +/- 20 mu V K-1, respectively, resulting in a total Seebeck coefficient of 750 +/- 35 mu V K-1. A two-arm bridge thermopile test structure results in a responsivity and a detectivity of 49.8 V W-1 and 5.75 x 10(6) cm Hz(1/2)W(-1), respectively, in vacuum when the n-well is removed.
Subject Keywords
Thermopiles
,
Infrared sensors
,
CMOS integration
URI
https://hdl.handle.net/11511/34278
Journal
Sensors and Actuators, A: Physical
DOI
https://doi.org/10.1016/s0924-4247(98)00038-7
Collections
Department of Electrical and Electronics Engineering, Article
Suggestions
OpenMETU
Core
An integrated thermopile structure with high responsivity using any standard CMOS process
Olgun, Z; Akar, O; Külah, Haluk; Akin, T (1997-01-01)
This paper reports a new thermopile structure using n-poly/p(+)-active layers that are available in any CMOS technology. The thermopile structures are obtained by post-etching of the fabricated and bonded chips. P+-active layers are placed in n-well regions, which are protected from etching by electrochemical etch-stop technique in a TMAH solution. The characterization results show that Seebeck coefficients of the n-poly and p(+)-active layers are -335 mu V/K and 450 mu V/K, respectively. Tests show that a ...
A low-power robust humidity sensor in a standard CMOS process
Okcan, Burak; Akın, Tayfun (2007-11-01)
This paper presents a low-cost thermal-conductivity-based humidity sensor implemented using a 0.6-mu m CMOS process, where suspended p-n junction diodes are used as the humidity-sensitive elements. The measurement method uses the difference between the thermal conductivities of air and water vapor at high temperatures by comparing the output voltages of two hea ted and thermally isolated diodes; one of which is exposed to the environment and has a humidity-dependent thermal conductance, while the other is s...
A low-cost small pixel uncooled infrared detector for large focal plane arrays using a standard CMOS process
Eminoglu, S; Tanrikulu, MY; Tezcan, DS; Akın, Tayfun (2002-04-03)
This paper reports the development of a low-cost, small pixel uncooled infrared detector using a standard CMOS process. The detector is based on a suspended and thermally isolated p(+)-active/n-well diode whose forward voltage changes due to an increase in the pixel temperature with absorbed infrared radiation. The detector is obtained with simple post-CMOS etching steps on dies fabricated using a standard n-well CMOS process. The post-CMOS process steps are achieved without needing any deposition or lithog...
A CMOS visible image sensor array using current mirroring integration readout circuitry
Akbay, Selim Sermet; Bircan, A.; Akın, Tayfun (null; 2000-08-30)
This paper reports the development of a CMOS visible sensor array using a high performance readout circuit called Current Mirroring Integration (CMI). The sensor element is a photodiode implemented using n-well and p+ -active layers available in any CMOS process. The current generated by optical excitation is mirrored and integrated in an off-pixel capacitor using the CMI readout circuit, which provides high injection efficiency, low input impedance, almost-zero and stable detector bias, and a high dynamic ...
A low-cost 128x128 uncooled infrared detector array in CMOS process
Eminoglu, Selim; Tanrikulu, Mahmud Yusuf; Akın, Tayfun (2008-02-01)
This paper discusses the implementation of a low-cost 128 x 128 uncooled infrared microbolometer detector array together with its integrated readout circuit (ROC) using a standard 0.35 mu m n-well CMOS and post-CMOS MEMS processes. The detector array can be created with simple bulk-micromachining processes after the CMOS fabrication, without the need for any complicated lithography or deposition steps. The array detectors are based on suspended p(+)-active/n-well diode microbolometers with a pixel size of 4...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
T. Akın, O. Akar, and H. Külah, “An integrated thermopile structure with high responsivity using any standard CMOS process,”
Sensors and Actuators, A: Physical
, pp. 218–224, 1998, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/34278.