Electromagnetic wave absorption potential of SiC-based ceramic woven fabrics in the GHz range

2009-03-01
Tan, E.
Kagawa, Y.
Dericioğlu, Arcan Fehmi
This article investigates the electromagnetic wave-absorbing properties of SiC-based ceramic woven fabrics. The electrical conductivity of ceramic woven fabrics was modified by heat treatment in air, resulting in oxidation, and the electromagnetic wave absorption potential of single- and double-layer ceramic woven fabrics were determined in the 17-40 GHz frequency range using the free-space method. The absorption potentials of ceramic woven fabrics of different chemical composition and weave were correlated with their material properties through X-ray diffraction, scanning electron microscopy, and electrical resistance measurement. The effect of the different arrangements of fabrics in multilayer forms, and how oxidation affects the electromagnetic wave absorption potential of the fabrics are discussed. Various double-layer combinations of SiC-based woven fabrics revealed promising potentials for both reduced reflection and transmission, resulting in similar to 90% absorption in the GHz range, which makes them powerful candidate materials for electromagnetic wave absorption applications.
JOURNAL OF MATERIALS SCIENCE

Suggestions

Characterization of electromagnetic wave absorbing properties of sic-based and alumina ceramic woven fabrics
Tan, Elvan; Dericioğlu, Arcan Fehmi; Department of Metallurgical and Materials Engineering (2008)
Electromagnetic wave absorbing properties of SiC-based and alumina ceramic woven fabrics have been investigated. Electrical conductivities of SiC-based ceramic woven fabrics were modified by heat treatment in air resulting in their oxidation. Surface properties of alumina woven fabrics were altered by gold-sputtering resulting in a high conductivity layer on the surface of the wovens. Electromagnetic wave interactions of single layer and double layered combinations of these ceramic woven fabrics were determ...
Electrical transport, optical and thermal properties of polyaniline-pumice composites
YILMAZ, KORAY; Akgoz, A.; Cabuk, M.; Karaagac, H.; KARABULUT, ORHAN; YAVUZ, Mustafa (2011-11-01)
In this study, electrical conductivity, photoconductivity, absorbance and thermal properties of polyaniline (PANI) and polyaniline-pumice composites were investigated. Temperature dependent conductivity and photoconductivity measurements were carried out in the temperature range of 80-400K. The measurements revealed that the dominant conduction mechanisms in polyaniline and 15% pumice doped composite were hopping conduction. The low activation energies calculated for 36% pumice doped composite indicated tha...
Absorption edge and optical constants of Tl2Ga2S3Se crystals from reflection and transmission, and ellipsometric measurements
Isik, M.; Hasanlı, Nızamı (2012-06-15)
The optical properties of Tl2Ga2S3Se layered crystalline semiconductors were investigated from transmission, reflection and ellipsometric measurements. The experimental results of the room temperature transmission and reflection measurements performed in the wavelength range of 400-1100 nm showed the presence of both indirect and direct transitions in the band structure of the crystals with 2.38 and 2.62 eV band gap energies.
Electromagnetic absorbance properties of a textile material coated using filtered arc-physical vapor deposition method
ESEN, MEHMET; İLHAN, İLHAMİ; KARAASLAN, MUHARREM; ÜNAL, EKİN ANIL; Dincer, F.; Sabah, C. (2015-09-01)
We explore the structure of a textile absorber in terms of its electromagnetic and absorption properties in the microwave region. Its absorption characteristics are similar to those reported for various metamaterial-based absorbers, exhibiting absorption as high as 98% at resonance. In addition, the angular behavior of the absorption properties of the sample reveal incident angle independency, which is the other added value of the study. Also, the suggested textile absorber has a simple configuration, which...
Indium tin oxide nanoparticles as anode for light-emitting diodes
Çırpan, Ali (Wiley, 2006-02-15)
Thin films of indium tin oxide (ITO) nanoparticles have been investigated as anode materials for polymer light-emitting diodes. A luminance efficiency (0.13 cd/ A), higher than that (0.09 cd/A) obtained in a control devices fabricated on conventional commercial ITO anodes were found. The thin films were made by spin coating of a suspension followed by annealing. The ITO nartoparticle films have a stable sheet resistance of 200 ohm/sq, and an optical transmittance greater than 86% over the range of 400-1000 ...
Citation Formats
E. Tan, Y. Kagawa, and A. F. Dericioğlu, “Electromagnetic wave absorption potential of SiC-based ceramic woven fabrics in the GHz range,” JOURNAL OF MATERIALS SCIENCE, pp. 1172–1179, 2009, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/34345.