Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Evaluation of seismic response factors for BRBFs using FEMA P695 methodology
Date
2018-12-01
Author
Ozkihc, Yasin Onuraip
Bozkurt, Mehmet Bakir
Topkaya, Cem
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
252
views
0
downloads
Cite This
This paper reports the details of a numerical study undertaken to evaluate seismic response factors for steel buckling-restrained braced frames (BRBFs) using the FEMA P695 methodology. In the United States, BRBFs are designed according to Minimum Design Loads for Buildings and Other Structures (ASCE 7) and the Seismic Provisions for Structural Steel Buildings (AISC 341). Twenty-four archetypes were designed according to the U.S. specifications and their behavior was assessed by making use of non-simulated collapse models. The interstory drift, brace axial strain and cumulative brace axial strain demands under collapse level ground motions were determined. The results obtained indicate that the current seismic response factors are adequate in terms of interstory drift and cumulative axial strain demands. On the other hand, large differences between the design level and collapse level axial strains were reported, which can result in undesirable brace behavior. Modified approaches were developed to estimate the axial strains for collapse level ground motions. These indude a modification to the deflection amplification factor and a modification to the AISC 341 requirements for expected brace deformations. The archetypes were redesigned using the proposed modifications and reevaluated using the FEMA P695 methodology. The results indicate that the proposed modifications result in axial strain demands that are in close agreement with the calculated demands.
Subject Keywords
Mechanics of Materials
,
Civil and Structural Engineering
,
Metals and Alloys
,
Building and Construction
URI
https://hdl.handle.net/11511/34363
Journal
JOURNAL OF CONSTRUCTIONAL STEEL RESEARCH
DOI
https://doi.org/10.1016/j.jcsr.2018.09.015
Collections
Department of Civil Engineering, Article
Suggestions
OpenMETU
Core
Testing and analysis of different hold down devices for CFS construction
Pehlivan, Barış Mert; Baran, Eray; Topkaya, Cem (Elsevier BV, 2018-06-01)
This paper summarizes the findings of a two-phase study on hold down devices used in cold formed steel (CFS) structural systems. The first phase consisted of component testing and numerical analysis of hold down devices while the second phase was based on testing of CFS framed sheathed wall panels under cyclic lateral loading. Eleven monotonic and three cyclic tensile load tests were performed on seven different types of hold down devices to assess the performance of readily available hold downs and propose...
Evaluation of Seismic Response Factors for Eccentrically Braced Frames Using FEMA P695 Methodology
KUŞYILMAZ, Ahmet; Topkaya, Cem (SAGE Publications, 2016-02-01)
This paper reports details of a numerical study undertaken to evaluate seismic response factors for steel eccentrically braced frames (EBFs) using the FEMA P695 methodology. Six archetypes were designed by making use of the current U.S. specifications, and their behavior was assessed by making use of nonsimulated collapse models. Results indicate that the current values of response factors result in designs with higher collapse probabilities than expected. Two modifications were developed to bring the colla...
Investigation of the Applicability of AASHTO LRFD Live Load Distribution equations for Integral Bridge Substructures
Erhan, Semih; Dicleli, Murat (SAGE Publications, 2009-08-01)
In this study, applicability of the AASHTO LRFD girder live load distribution equations (LLDEs) for integral bridge (IB) abutments and piles is investigated. For this Purpose, numerous 3-D and corresponding 2-D structural models of typical IBs are built and analyzed under AASHTO LRFD live load. In the analyses, the effect of various superstructure properties such as span length, slab thickness, girder spacing and stiffness are considered. The results from the 2-D and 3-D analyses are then used to calculate ...
Development of Fragility Curves for Single-Column RC Italian Bridges Using Nonlinear Static Analysis
Perdomo, Camilo; Monteiro, Ricardo; Sucuoğlu, Haluk (Informa UK Limited, 2020-05-07)
The main objective of this study is to assess the accuracy and suitability of Nonlinear Static Procedures (NSPs) in the development of analytical damage fragility curves for seismic risk assessment of large portfolios of Reinforced Concrete (RC) bridges. Seven NSP approaches, from widely used single-mode conventional pushover-based approaches to the more rigorous multi-mode conventional or adaptive pushover-based procedures are implemented. By systematically comparing fragility curve estimations in terms of...
Seismic performance of chevron braced steel frames with and without viscous fluid dampers as a function of ground motion and damper characteristics
Dicleli, Murat (Elsevier BV, 2007-08-01)
This study is aimed at comparing the seismic performance of steel chevron braced frames (CBFs) with and without viscous fluid dampers (VFDs) as a function of the intensity and frequency characteristics of the ground motion and VFD parameters. For this purpose, comparative nonlinear time history (NLTH) analyses of single and multiple story CBFs with and without VFDs are conducted using ground motions with various frequency characteristics scaled to represent small, moderate and large intensity earthquakes. A...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
Y. O. Ozkihc, M. B. Bozkurt, and C. Topkaya, “Evaluation of seismic response factors for BRBFs using FEMA P695 methodology,”
JOURNAL OF CONSTRUCTIONAL STEEL RESEARCH
, pp. 41–57, 2018, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/34363.