Testing and analysis of different hold down devices for CFS construction

2018-06-01
This paper summarizes the findings of a two-phase study on hold down devices used in cold formed steel (CFS) structural systems. The first phase consisted of component testing and numerical analysis of hold down devices while the second phase was based on testing of CFS framed sheathed wall panels under cyclic lateral loading. Eleven monotonic and three cyclic tensile load tests were performed on seven different types of hold down devices to assess the performance of readily available hold downs and propose new hold down geometries that employ hot rolled angle sections. Tests revealed that some of the hold down devices that have been used in CFS construction exhibited very poor behavior with significant deformation under loading. The experimentally observed deformation mode of all hold down device types was correctly captured by the finite element models. Experimental and numerical findings proved that a superior performance in terms of strength and stiffness can be obtained from a simple hold down device that is manufactured from a steel angle section. In the second group of tests, the proposed angle section geometry was further studied as part of oriented strand board (OSB) sheathed CFS framed wall panels that were subjected to cyclic lateral loading. Close agreement was observed between the wall panel test results and those obtained from the hold down assembly tests, Wall panel test results indicated that the angle type hold down device has adequate mechanical performance to develop the expected strength of OSB sheathed CFS framed wall panel.
JOURNAL OF CONSTRUCTIONAL STEEL RESEARCH

Suggestions

Evaluation of seismic response factors for BRBFs using FEMA P695 methodology
Ozkihc, Yasin Onuraip; Bozkurt, Mehmet Bakir; Topkaya, Cem (Elsevier BV, 2018-12-01)
This paper reports the details of a numerical study undertaken to evaluate seismic response factors for steel buckling-restrained braced frames (BRBFs) using the FEMA P695 methodology. In the United States, BRBFs are designed according to Minimum Design Loads for Buildings and Other Structures (ASCE 7) and the Seismic Provisions for Structural Steel Buildings (AISC 341). Twenty-four archetypes were designed according to the U.S. specifications and their behavior was assessed by making use of non-simulated c...
Seismic design of lifeline bridge using hybrid seismic isolation
Dicleli, Murat (American Society of Civil Engineers (ASCE), 2002-03-01)
This paper presents the merits of a hybrid seismic isolation system used for the seismic design of a major bridge. The bridge is analyzed for two different arrangements of seismic isolation systems. The first arrangement consists of friction pendulum bearings at all substructure locations; the other incorporates a hybrid system where laminated elastomeric bearings are used at the abutments and friction pendulum bearings at the piers. Analysis results have demonstrated that the hybrid seismic isolation syste...
Importance of Degrading Behavior for Seismic Performance Evaluation of Simple Structural Systems
Erberik, Murat Altuğ (Informa UK Limited, 2011-01-01)
This study focuses on effect of degradation characteristics on seismic performance of simple structural systems. Equivalent single degree of freedom systems are used for which the structural characteristics are taken from existing reinforced concrete (RC) frame buildings. Simulation of degrading behavior is achieved by considering actual experimental data. To obtain the seismic response of degrading structural systems, two different approaches are used: inelastic spectral analysis and fragility analysis. Ac...
Evolutionary structural optimization of steel gusset plates
Khalaf, A. A.; Saka, M. P. (Elsevier BV, 2007-01-01)
Evolutionary structural optimization is applied to determine the optimum shape of steel gusset plates subjected to axial forces. A number of different gusset plates used in various types of connections is considered for this purpose. The evolutionary structural optimization approach is employed to find the optimum shapes of a gusset plate used in these connections. The first example considers a gusset plate having two holes which are utilized in the connection of double angle carrying a tensile force. Withi...
Effect of Presoaked Expanded Perlite Aggregate on the Dimensional Stability and Mechanical Properties of Engineered Cementitious Composites
KESKİN, SÜLEYMAN BAHADIR; Sulaiman, Kamaran; Sahmaran, Mustafa; Yaman, İsmail Özgür (American Society of Civil Engineers (ASCE), 2013-06-01)
This paper reports on an investigation of the use of expanded perlite aggregate as saturated lightweight aggregate (LWA) with respect to the mechanical and dimensional stability properties of engineered cemetitious composites (ECC). Expanded perlite aggregate was soaked in water for 24 h before its use in ECC, and replaced 10, 20, and 30% of the aggregate that was used in ECC production. The mixture proportion of a standard ECC mixture with properties that have been extensively reported in the literature is...
Citation Formats
B. M. Pehlivan, E. Baran, and C. Topkaya, “Testing and analysis of different hold down devices for CFS construction,” JOURNAL OF CONSTRUCTIONAL STEEL RESEARCH, pp. 97–115, 2018, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/40786.