Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
ELECTRICAL-IMPEDANCE TOMOGRAPHY USING INDUCED CURRENTS - AN EXPERIMENTAL-STUDY
Date
1993-11-06
Author
Gençer, Nevzat Güneri
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
171
views
0
downloads
Cite This
The theory behind induced current EIT is summarized. A prototype data acquisition system is described which is realized to verify the theoretical studies. Data collected from a two-dimensional (2D) object distribution is compared with the calculated data obtained by the finite element method. It is shown that the data acquisition system is capable of collecting real data which closely follows the theoretically expected perturbation in boundary potential differences. Images reconstructed by real data sets are indicatives of the sizes and locations of the inhomogeneities in the saline solution.
Subject Keywords
Impedance
,
Tomography
,
Conductivity
,
Magnetic field measurement
,
Image reconstruction
,
Voltage
,
Electrodes
,
Cables
,
Equations
,
Prototypes
URI
https://hdl.handle.net/11511/34446
DOI
https://doi.org/10.1109/nssmic.1993.373601
Collections
Department of Electrical and Electronics Engineering, Conference / Seminar
Suggestions
OpenMETU
Core
Electrical resistivities of liquid Li-Sn and Na-Pb alloys
Khajil, T. M. A.; Tomak, Mehmet (American Physical Society (APS), 1988-06-01)
The resistivity of liquid Li-Sn and Na-Pb alloys is calculated using the theory of ‘‘2 k F ’’ scattering theory recently developed by Morgan et al. The partial structure factors are described by the mean-spherical approximation for a system of hard spheres with Yukawa tails. The calculated resistivity values are in very good agreement with experiment. The improvement over the widely used Faber-Ziman formalism is impressive.
Phase transition in compact QED3 and the Josephson junction
Onemli, VK; Tas, M; Tekin, Bayram (2001-08-01)
We study the finite temperature phase transition in 2+1 dimensional compact QED and its dual theory: Josephson junction. Duality of these theories at zero temperature was established long time ago in [1]. Phase transition in compact QED is well studied thus we employ the 'duality' to study the superconductivity phase transition in a Josephson junction. For a thick junction we obtain a critical temperature in terms of the geometrical properties of the junction.
Induced current magnetic resonance electrical impedance tomography (ICMREIT) with low frequency switching of gradient fields
Eroğlu, Hasan Hüseyin; Eyüboğlu, Behçet Murat; Department of Electrical and Electronics Engineering (2017)
In this thesis, it is aimed to investigate induced current magnetic resonance electrical impedance tomography (ICMREIT) starting from modeling and analysis to experimental validation. Forward and inverse problems of ICMREIT are formulated. A magnetic resonance imaging (MRI) pulse sequence is proposed for the realization of ICMREIT using the slice selection (z) gradient coil of MRI scanners. Considering the proposed MRI pulse sequence, relationship between the low frequency (LF) MR phase and the secondary ma...
ELECTRICAL-IMPEDANCE TOMOGRAPHY USING INDUCED CURRENTS
Gençer, Nevzat Güneri; Kuzuoğlu, Mustafa (1994-06-01)
The mathematical basis of a new imaging modality, Induced Current Electrical Impedance Tomography (EIT), is investigated. The ultimate aim of this technique is the reconstruction of conductivity distribution of the human body, from voltage measurements made between electrodes placed on the surface, when currents are induced inside the body by applied time varying magnetic fields. In this study the two-dimensional problem is analyzed. A specific 9-coil system for generating nine different exciting magnetic f...
Quantum decoherence and quantum state diffusion formalism
Dumlu, Cesim Kadri; Turgut, Sadi; Department of Physics (2007)
Foundational problems of quantum theory, regarding the appearance of classicality and the measurement problem are stated and their link to studies of open quantum systems is discussed. This study's main aim is to analyze the main approaches that are employed in the context of open quantum systems. The general form of Markovian master equations are derived by a constructive approach. The Quantum State Diffusion (QSD) formalism is stressed upon as an alternative method to the master equations. Using the Calde...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
N. G. Gençer, “ELECTRICAL-IMPEDANCE TOMOGRAPHY USING INDUCED CURRENTS - AN EXPERIMENTAL-STUDY,” 1993, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/34446.