Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Acoustic surface perception from naturally occurring step sounds of a dexterous hexapod robot
Date
2013-10-01
Author
Ozkul, Mine Cuneyitoglu
Saranlı, Afşar
Yazıcıoğlu, Yiğit
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
213
views
0
downloads
Cite This
Legged robots that exhibit dynamic dexterity naturally interact with the surface to generate complex acoustic signals carrying rich information on the surface as well as the robot platform itself. However, the nature of a legged robot, which is a complex, hybrid dynamic system, renders the more common approach of model-based system identification impractical. The present paper focuses on acoustic surface identification and proposes a non-model-based analysis and classification approach adopted from the speech processing literature. A novel feature set composed of spectral band energies augmented by their vector time derivatives and time-domain averaged zero dossing rate is proposed. Using a multi-dimensional vector classifier, these features carry enough information to accurately classify a range of commonly occurring indoor and outdoor surfaces without using of any mechanical system model. A comparative experimental study is carried out and classification performance and computational complexity are characterized. Different feature combinations, classifiers and changes in critical design parameters are investigated. A realistic and representative acoustic data set is collected with the robot moving at different speeds on a number of surfaces. The study demonstrates promising performance of this non-model-based approach, even in an acoustically uncontrolled environment. The approach also has good chance of performing in real-time.
Subject Keywords
Control and Systems Engineering
,
Signal Processing
,
Mechanical Engineering
,
Civil and Structural Engineering
,
Aerospace Engineering
,
Computer Science Applications
URI
https://hdl.handle.net/11511/34456
Journal
MECHANICAL SYSTEMS AND SIGNAL PROCESSING
DOI
https://doi.org/10.1016/j.ymssp.2013.03.002
Collections
Department of Electrical and Electronics Engineering, Article
Suggestions
OpenMETU
Core
Flexible multibody dynamic modeling and simulation of rhex hexapod robot with half circular compliant legs
Oral, Gökhan; Yazıcıoğlu, Yiğit; Department of Mechanical Engineering (2008)
The focus of interest in this study is the RHex robot, which is a hexapod robot that is capable of locomotion over rugged, fractured terrain through statically and dynamically stable gaits while stability of locomotion is preserved. RHex is primarily a research platform that is based on over five years of previous research. The purpose of the study is to build a virtual prototype of RHex robot in order to simulate different behavior without manufacturing expensive prototypes. The virtual prototype is modele...
Acoustic surface perception through the ground interaction of compliant legs of a hexapod robot
Cüneyitoğlu Özkul, Mine; Yazıcıoğlu, Yiğit; Saranlı, Afşar; Department of Mechanical Engineering (2012)
A dynamically dexterous legged robot platform generates specific acoustic signals during the interaction with the ground and the environment. These acoustic signals are expected to contain rich information that is related to the interaction surface as a function of the position of the legs and the overall contact process mixed with the actuator sounds that initiate the movement. As the robot platform walks or runs in any environment, this convolved acoustic signal created can be processed and analyzed in re...
Performance evaluation of piezoelectric sensor/actuator on active vibration control of a smart beam
Şahin, Melin (SAGE Publications, 2011-01-01)
In this paper the performance of a piezoelectric sensor/actuator pair and self-sensing piezoelectric actuator on the investigation of vibration characteristics and active vibration control of a smart beam are presented. The performance of piezoelectric patches on actuation and sensing is evaluated by investigating the vibration characteristics of the smart beam via various excitation mechanisms and transduction systems. For active vibration suppression of the smart beam, robust controllers are designed and ...
Fuzzy actor-critic learning based intelligent controller for high-level motion control of serpentine robots
Arı, Evrim Onur; Erkmen, İsmet; Department of Electrical and Electronics Engineering (2005)
In this thesis, an intelligent controller architecture for gait selection of a serpentine robot intended to be used in search and rescue tasks is designed, developed and simulated. The architecture is independent of the configuration of the robot and the robot is allowed to make different kind of movements, similar to grasping. Moreover, it is applicable to parallel processing in several aspects and it is an implementation of a controller network on robot segment network. In the architecture several behavio...
Optimal initialization of manipulation dynamics by vorticity model of robot hand preshaping. Part II: Analyses of grasp initialization and its vorticity based optimization
Erkmen, Aydan Müşerref; Tekkaya, E (Wiley, 2000-04-01)
Our work focuses on developing methods of determining the optimal preshape of a robot hand closing onto an object in order to achieve at contact a certain stability and manipulability degree based on kinematic considerations. This purposive closing of a preshaped hand should then be kinematically modelled in such a way that impact force patterns on the object can naturally be deduced from the model and be optimized such that upon contacting the object the desired optimum initial conditions of manipulation a...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
M. C. Ozkul, A. Saranlı, and Y. Yazıcıoğlu, “Acoustic surface perception from naturally occurring step sounds of a dexterous hexapod robot,”
MECHANICAL SYSTEMS AND SIGNAL PROCESSING
, pp. 178–193, 2013, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/34456.