Fuzzy actor-critic learning based intelligent controller for high-level motion control of serpentine robots

Download
2005
Arı, Evrim Onur
In this thesis, an intelligent controller architecture for gait selection of a serpentine robot intended to be used in search and rescue tasks is designed, developed and simulated. The architecture is independent of the configuration of the robot and the robot is allowed to make different kind of movements, similar to grasping. Moreover, it is applicable to parallel processing in several aspects and it is an implementation of a controller network on robot segment network. In the architecture several behaviors are defined for each of the segments. Every behavior is realized in the form of Fuzzy Actor-Critic Learning agents based on fuzzy networks and reinforcement learning. Each segment controller determines the next suitable position in the sensory space acquired using ultrasound sensors, a genetic algorithm implementation then tries to find the change of the joint angles to achieve the desired movement in a given amount of time. This allows optimization on different criteria, during motion. Simulations are performed and presented to introduce the efficiency of the developed controller architecture. Moreover a simplified mathematical analysis is performed to gain insight of the controller dynamics.

Suggestions

Acoustic surface perception from naturally occurring step sounds of a dexterous hexapod robot
Ozkul, Mine Cuneyitoglu; Saranlı, Afşar; Yazıcıoğlu, Yiğit (Elsevier BV, 2013-10-01)
Legged robots that exhibit dynamic dexterity naturally interact with the surface to generate complex acoustic signals carrying rich information on the surface as well as the robot platform itself. However, the nature of a legged robot, which is a complex, hybrid dynamic system, renders the more common approach of model-based system identification impractical. The present paper focuses on acoustic surface identification and proposes a non-model-based analysis and classification approach adopted from the spee...
Implementation and simulation of mc68hc11 microcontroller unit using systemc for co-design studies
Tuncalı, Cumhur Erkan; Aşkar, Murat; Department of Electrical and Electronics Engineering (2007)
In this thesis, co-design and co-verification of a microcontroller hardware and software using SystemC is studied. For this purpose, an MC68HC11 microcontroller unit, a test bench that contains input and output modules for the verification of microcontroller unit are implemented using SystemC programming language and a visual simulation program is developed using C# programming language in Microsoft .NET platform. SystemC is a C++ class library that is used for co-designing hardware and software of a system...
Image segmentation with Improved region modeling
Ersoy, Ozan; Alatan, Abdullah Aydın; Department of Electrical and Electronics Engineering (2004)
Image segmentation is an important research area in digital image processing with several applications in vision-guided autonomous robotics, product quality inspection, medical diagnosis, the analysis of remotely sensed images, etc. The aim of image segmentation can be defined as partitioning an image into homogeneous regions in terms of the features of pixels extracted from the image. Image segmentation methods can be classified into four main categories: 1) clustering methods, 2) region-based methods, 3) ...
A fluid dynamics framework for control of mobile robot networks
Paç, Muhammed Raşid; Erkmen, Aydan Müşerref; Department of Electrical and Electronics Engineering (2007)
This thesis proposes a framework for controlling mobile robot networks based on a fluid dynamics paradigm. The approach is inspired by natural behaviors of fluids demonstrating desirable characteristics for collective robots. The underlying mathematical formalism is developed through establishing analogies between fluid bodies and multi-robot systems such that robots are modeled as fluid elements that constitute a fluid body. The governing equations of fluid dynamics are adapted to multi-robot systems and a...
Design and digital implementation of thyristor controlled reactor control
Genç, Murat; Ermiş, Muammer; Department of Electrical and Electronics Engineering (2007)
In this research work, the control system of 16 MVAr, 13.8 kV TCR will be designed and digitally implemented. A Real-Time Control System (NI CompactRIOTM Reconfigurable I/O) and a Digital Platform (NI LabVIEWTM Gcode) are used in the digital implementation of TCR control system. The digital control system is composed of reactive power calculation, firing angle determination and triggering pulse generation blocks. The performance of control system will be tested in the field. The simulation results will also...
Citation Formats
E. O. Arı, “Fuzzy actor-critic learning based intelligent controller for high-level motion control of serpentine robots,” M.S. - Master of Science, Middle East Technical University, 2005.