Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Particle-based characterization of Ottawa sand: Shape, size, mineralogy, and elastic moduli
Date
2017-10-01
Author
Erdoğan, Sinan Turhan
Stutzman, P. E.
Garboczi, E. J.
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
210
views
0
downloads
Cite This
The success of computational materials science models for cement and concrete, at the micrometer-to-millimeter scale, is based on careful characterization of the two main starting materials - cement and aggregates. Concrete is a complex material, and models based on over-simplified chemical, geometrical, and topological assumptions have limits on the behavior they can realistically simulate. In this paper, a sample of Ottawa sand was carefully characterized, since this material is used in laboratories all around North America as the specified sand for many standard tests, including what is possibly the most highly used ASTM test of all in the field of cement-based materials, C-109, the mortar cube strength test. Particle shape and size distributions were acquired via a combination of X-ray tomography, spherical harmonic analysis, sieve analysis, microscopy and image analysis, and laser diffraction. Quantitative X-ray diffraction showed that the Ottawa sand used was very pure alpha-quartz with 1% amorphous content. Elastic moduli information at the particle level was obtained via instrumented nanoindentation. Polarized light microscopy showed that the particles that were indented were single crystals. Results for the Young's modulus, E, of Ottawa sand were E = 110 GPa +/- 5 GPa (assumed Poisson's ratio of 0.08), in agreement with other nanoindentation results for Ottawa sand in the literature but more than one standard deviation larger than the results obtained from isotropic averages of the elastic moduli tensor of a quartz, measured by ultrasonic and Brillouin scattering techniques and averaged in various ways. This kind of disagreement has been seen for other minerals as well as alpha-quartz, and indicates that nano indentation measurement of elastic moduli for particulate minerals used in cement and concrete and other applications must be used with some care. This characterization procedure can now be confidently employed for any class Of sand or gravel particle that is desired to be used in a three-dimensional mortar or concrete model.
Subject Keywords
General Materials Science
,
Building and Construction
URI
https://hdl.handle.net/11511/34592
Journal
CEMENT & CONCRETE COMPOSITES
DOI
https://doi.org/10.1016/j.cemconcomp.2017.07.003
Collections
Department of Civil Engineering, Article
Suggestions
OpenMETU
Core
Laboratory production of calcium sulfoaluminate cements with high industrial waste content
Canbek, Ogulcan; Shakouri, Sahra; Erdoğan, Sinan Turhan (Elsevier BV, 2020-02-01)
A drawback of conventional calcium sulfoaluminate (CSA) cement production is the use of the costly raw material bauxite as a source of alumina to form the main clinker phase ye'elimite. Replacement of bauxite with industrial wastes can benefit CSA cements economically and environmentally. This study demonstrates the use of high amounts of red mud, a sulfate-rich/high-lime fly ash, and desulfogypsum as raw materials in producing CSA clinkers and cements with better mechanical performances than an all-natural...
Parameter optimization on compressive strength of steel fiber reinforced high strength concrete
Ayan, E.; Saatcioglu, Oe.; Turanlı, Lutfullah (Elsevier BV, 2011-06-01)
This paper illustrates parameter optimization of compressive strength of steel fiber reinforced high strength concrete (SFRHSC) by statistical design and analysis of experiments. Among several factors affecting the compressive strength, five parameters that maximize all of the responses have been chosen as the most important ones as age of testing, binder type, binder amount, curing type and steel fiber volume fraction. Taguchi analysis techniques have been used to evaluate L-27 (3(13)) Taguchi's orthogonal...
Seismic strengthening of reinforced concrete frames by precast concrete panels
BARAN, MEHMET; Susoy, M.; Okuyucu, D.; Tankut, T. (Thomas Telford Ltd., 2011-05-01)
An innovative occupant-friendly retrofitting technique has been developed for reinforced concrete (RC)-framed structures which constitute the major portion of the existing building stock. The idea is to convert the existing hollow brick infill wall into a load-carrying system acting as a cast-in-place concrete shear wall by reinforcing it with relatively thin high-strength precast concrete panels epoxy bonded to the plastered infill wall and epoxy connected to the frame members. In this study, results of 11...
Simulation of equal channel angular pressing applied to produce structures with ultrafine-sized grains
Karpuz, Pinar; Şimşir, Caner; Gür, Cemil Hakan (Inderscience Publishers, 2009-01-01)
Severe plastic deformation methods are of great interest in industrial forming applications, as they give rise to significant refinement in microstructures and improvements in mechanical and physical properties. In the 'equal channel angular pressing (ECAP)', which is the most common method for production of ultrafine grained bulk samples, very high plastic strains are introduced into the bulk material without any change in cross section. In this study, the plastic deformation behaviour of the materials sub...
FINITE-ELEMENT ANALYSIS OF PRESTRESSED AND REINFORCED-CONCRETE STRUCTURES
ELMEZAINI, N; CITIPITIOGLU, E (American Society of Civil Engineers (ASCE), 1991-10-01)
A practical and powerful technique for the discrete representation of reinforcement in finite element analysis of prestressed and reinforced concrete structures is presented. Isoparametric quadratic and cubic finite elements with movable nodes are developed utilizing a correction technique for mapping distortion. Reinforcing bars and/or prestressing tendons are modeled independently of the concrete mesh. Perfect or no bond as well as any bond-slip model can easily be represented. The procedure is succes...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
S. T. Erdoğan, P. E. Stutzman, and E. J. Garboczi, “Particle-based characterization of Ottawa sand: Shape, size, mineralogy, and elastic moduli,”
CEMENT & CONCRETE COMPOSITES
, pp. 36–44, 2017, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/34592.