Show/Hide Menu
Hide/Show Apps
anonymousUser
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Açık Bilim Politikası
Açık Bilim Politikası
Frequently Asked Questions
Frequently Asked Questions
Browse
Browse
By Issue Date
By Issue Date
Authors
Authors
Titles
Titles
Subjects
Subjects
Communities & Collections
Communities & Collections
Laboratory production of calcium sulfoaluminate cements with high industrial waste content
Date
2020-02-01
Author
Canbek, Ogulcan
Shakouri, Sahra
Erdoğan, Sinan Turhan
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
1
views
0
downloads
A drawback of conventional calcium sulfoaluminate (CSA) cement production is the use of the costly raw material bauxite as a source of alumina to form the main clinker phase ye'elimite. Replacement of bauxite with industrial wastes can benefit CSA cements economically and environmentally. This study demonstrates the use of high amounts of red mud, a sulfate-rich/high-lime fly ash, and desulfogypsum as raw materials in producing CSA clinkers and cements with better mechanical performances than an all-natural raw material CSA reference cement. Mineralogical compositions of the clinkers and hydrated cement pastes were investigated using x-ray diffraction, isothermal calorimetry, thermogravimetric analysis and scanning electron microscopy. Compressive strength development of mortars, made with citric acid, were studied up to 28 d. It was found that increasing fly ash increases the belitic nature, and increasing red mud increases the terrific nature of the clinkers. Mortars with 28-d strengths exceeding 40 MPa could be made with cements containing similar to 38% waste and only half the bauxite in the reference. Medium early and ultimate strength mortars could be made with a similar to 55% waste cement when bauxite was reduced to a quarter of the reference, with small additions of Ca(NO3)(2)center dot 4H(2)O or Li2CO3. Desulfogypsum, as a source of sulfates, was more beneficial to strength development than natural gypsum. Ye'elimite reactivity was enhanced in red-mud containing cements. Cements with both fly ash and red mud experienced lower carbonation than those made with only one of the two wastes.
Subject Keywords
General Materials Science
,
Building and Construction
URI
https://hdl.handle.net/11511/43429
Journal
CEMENT & CONCRETE COMPOSITES
DOI
https://doi.org/10.1016/j.cemconcomp.2019.103475
Collections
Department of Civil Engineering, Article