Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
A Random Matrix Measurement Update Using Taylor-Series Approximations
Date
2018-07-13
Author
Sarıtaş, Elif
Orguner, Umut
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
274
views
0
downloads
Cite This
An approximate extended target tracking (ETT) measurement update is derived for random matrix extent representation with measurement noise. The derived update uses Taylor series approximations. The performance of the proposed update methodology is illustrated on a simple ETT scenario and compared to alternative updates in the literature.
Subject Keywords
Extended target tracking
,
Random matrices
,
Taylor series
URI
https://hdl.handle.net/11511/34596
DOI
https://doi.org/10.23919/icif.2018.8455537
Collections
Department of Electrical and Electronics Engineering, Conference / Seminar
Suggestions
OpenMETU
Core
A Variational Measurement Update for Extended Target Tracking With Random Matrices
Orguner, Umut (2012-07-01)
This correspondence proposes a new measurement update for extended target tracking under measurement noise when the target extent is modeled by random matrices. Compared to the previous measurement update developed by Feldmann et al., this work follows a more rigorous path to derive an approximate measurement update using the analytical techniques of variational Bayesian inference. The resulting measurement update, though computationally more expensive, is shown via simulations to be better than the earlier...
A PHD Filter for Tracking Multiple Extended Targets Using Random Matrices
Granstrom, Karl; Orguner, Umut (2012-11-01)
This paper presents a random set based approach to tracking of an unknown number of extended targets, in the presence of clutter measurements and missed detections, where the targets' extensions are modeled as random matrices. For this purpose, the random matrix framework developed recently by Koch et al. is adapted into the extended target PHD framework, resulting in the Gaussian inverse Wishart PHD (GIW-PHD) filter. A suitable multiple target likelihood is derived, and the main filter recursion is present...
A Gaussian mixture PHD filter for extended target tracking
Granström, Karl; Lundquist, Christian; Orguner, Umut (null; 2010-07-29)
In extended target tracking, targets potentially produce more than one measurement per time step. Multiple extended targets are therefore usually hard to track, due to the resulting complex data association. The main contribution of this paper is the implementation of a Probability Hypothesis Density ( phd) filter for tracking of multiple extended targets. A general modification of the phd filter to handle extended targets has been presented recently by Mahler, and the novelty in this work lies in the reali...
Extended Target Tracking Using Gaussian Processes
Wahlström, Niklas; Özkan, Emre (2015-08-15)
In this paper, we propose using Gaussian processes to track an extended object or group of objects, that generates multiple measurements at each scan. The shape and the kinematics of the object are simultaneously estimated, and the shape is learned online via a Gaussian process. The proposed algorithm is capable of tracking different objects with different shapes within the same surveillance region. The shape of the object is expressed analytically, with well-defined confidence intervals, which can be used ...
Extended Target Tracking and Classification Using Neural Networks
Tuncer, Barkın; Kumru, Murat; Özkan, Emre (2019-01-01)
Extended target/object tracking (ETT) problem involves tracking objects which potentially generate multiple measurements at a single sensor scan. State-of-the-art ETT algorithms can efficiently exploit the available information in these measurements such that they can track the dynamic behaviour of objects and learn their shapes simultaneously. Once the shape estimate of an object is formed, it can naturally be utilized by high-level tasks such as classification of the object type. In this work, we propose ...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
E. Sarıtaş and U. Orguner, “A Random Matrix Measurement Update Using Taylor-Series Approximations,” 2018, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/34596.