A shape deformation algorithm for constrained multidimensional scaling

We present a new Euclidean embedding technique based on volumetric shape registration. Extrinsic representation of the intrinsic geometry of a shape is preferable in various computer graphics applications as it poses only a small degrees of freedom to deal with during processing. A popular Euclidean embedding approach to achieve such a representation is multidimensional scaling (MDS), which, however, distorts the original geometric details drastically. Our method introduces a constraint on the original MDS formulation in order, to preserve the initial geometric details while the input shape is pulled towards its MDS pose using the perfectly accurate bijection in between. The regularizer of this registration framework is chosen in such a way that the system supports large deformations yet remains fast. Consequently, we produce a detail-preserving MDS pose in 90 s for a 53 K-vertex high-resolution mesh on a modest computer. We can also add pairwise point constraints on the deforming shape without any additional cost. Detail-preserving MDS is superior for non-rigid shape retrieval and useful for shape segmentation, as demonstrated.


A Graph-Based Approach for Video Scene Detection
Sakarya, Ufuk; Telatar, Zjya (2008-04-22)
In this paper, a graph-based method for video scene detection is proposed. The method is based on a weighted undirected graph. Each shot is a vertex on the graph. Edge weights among the vertices are evaluated by using spatial and temporal similarities of shots. By using the complete information of the graph, a set of the vertices mostly similar to each other and dissimilar to the others is detected. Temporal continuity constraint is achieved on this set. This set is the first detected video scene. The verti...
An algorithm for line matching in an image by mapping into an n-dimensional vector space
Sultanov, Raiymbek; Atakan, Ahmet; Ismailova, Rita (2019-01-01)
This paper proposes a minimal length difference algorithm for construction of a line in an image by solving the problem of optimal contour approximation. In this algorithm, a method for finding interest points is proposed, and the object matching (classification) is done by mapping interest points onto a vector space. In cases where the lines in the representation of the images are not smooth, the algorithm converges rapidly. The results of the experiments showed that for convergence of the contour simplifi...
A modular regularized variational multiscale proper orthogonal decomposition for incompressible flows
Eroglu, Fatma G.; Kaya Merdan, Songül; Rebholz, Leo G. (Elsevier BV, 2017-10-01)
In this paper, we propose, analyze and test a post-processing implementation of a projection-based variational multiscale (VMS) method with proper orthogonal decomposition (POD) for the incompressible Navier-Stokes equations. The projection-based VMS stabilization is added as a separate post-processing step to the standard POD approximation, and since the stabilization step is completely decoupled, the method can easily be incorporated into existing codes, and stabilization parameters can be tuned independe...
Kuzuoğlu, Mustafa; Leblebicioğlu, Mehmet Kemal (IOP Publishing, 1994-05-01)
In this paper, we propose a fast algorithm for the reconstruction of the conductivity perturbation DELTAsigma about a known conductivity variation sigma0. The method is based on the minimization of a quadratic functional subject to linear constraints, where the existence of a unique solution is guaranteed. The algorithm developed for this purpose is iterative and each iteration is composed of a simple matrix multiplication. The validity of this method is illustrated with several examples.
A family of deployable polygons and polyhedra
Kiper, Goekhan; Söylemez, Eres; Kişisel, Ali Ulaş Özgür (Elsevier BV, 2008-05-01)
A new linkage type for resizing polygonal and polyhedral shapes is proposed. The single degree-of-freedom planar linkages considered mainly consist of links connected by revolute joints. It is shown that the group of mechanisms obtained realize Cardanic Motion. The polyhedral linkages proposed are constructed by implementing the proposed planar linkages on the faces and interconnecting them by links at the vertices to retain the solid angles of the polyhedral shape of interest.
Citation Formats
Y. Sahillioğlu, “A shape deformation algorithm for constrained multidimensional scaling,” COMPUTERS & GRAPHICS-UK, pp. 156–165, 2015, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/34635.