AN ELECTROMAGNETIC MICRO POWER GENERATOR FOR LOW FREQUENCY ENVIRONMENTAL VIBRATIONS BASED ON THE FREQUENCY UP-CONVERSION TECHNIQUE

2009-01-29
Sari, Ibrahim
Balkan, Tuna
Külah, Haluk
This paper presents an electromagnetic (EM) vibration-to-electrical power generator, which can efficiently harvest energy from low-frequency external vibrations by using frequency up-conversion. The generator can effectively scavenge energy from low frequency environmental vibrations of 70-150 Hz and generates 0.57 mV voltage with 0.25 nW power from a single cantilever at a vibration frequency of 95 Hz. The fabricated generator size is 8.5 x 7 x 2.5 mm(3) and a total number of 20 serially connected cantilevers have been used to multiply the generated voltage and power. The performance of the generator is also compared with a same sized traditional magnet-coil type generator to prove its effectiveness.

Suggestions

An Adaptable Interface Circuit With Multistage Energy Extraction for Low-Power Piezoelectric Energy Harvesting MEMS
Chamanian, Salar; Ulusan, Hasan; Koyuncuoglu, Aziz; Muhtaroglu, Ali; Külah, Haluk (Institute of Electrical and Electronics Engineers (IEEE), 2019-03-01)
This paper presents a self-powered interface circuit to extract energy from ambient vibrations for powering up microelectronic devices. The circuit interfaces a piezoelectric energy harvesting micro electro-mechanical systems (MEMS) device to scavenge acoustic energy. Synchronous electric charge extraction (SECE) technique is deployed through the implementation of a novel multistage energy extraction (MSEE) circuit in 180 nm HV CMOS technology to harvest and store energy. The circuit is optimized to operate...
A Compact Energy Transducer for Power Generation From Respiration
Beyaz, Mustafa Ilker; Habibiabad, Sahar; Yildiz, Hamza; Goreke, Utku; Azgın, Kıvanç (Institute of Electrical and Electronics Engineers (IEEE), 2019-06-01)
This paper reports a compact magnetic transducer developed for generating electrical power from respiration. The device incorporates a side-drive turbine rotor with embedded permanent magnets and two stators, integrated into a poly(methyl methacrylate) (PMMA) package for actuation. The novelty and advantage of the design lies in almost full use of the available turbine volume together with two stators for both mechanical and electrical transduction, which leads to high rotational speeds and high voltage gen...
An Electromagnetic Micro Power Generator for Low-Frequency Environmental Vibrations Based on the Frequency Upconversion Technique
Sari, Ibrahim; Balkan, Raif Tuna; Külah, Haluk (2010-02-01)
This paper presents a microelectromechanical-system-based electromagnetic vibration-to-electrical power generator that can harvest energy from low-frequency external vibrations. The efficiency of vibration-based harvesters is proportional to excitation frequency, so the proposed generator is designed to convert low-frequency environmental vibrations to a higher frequency by employing the frequency upconversion (FupC) technique. It has been shown that the generator can effectively harvest energy from environ...
A Self-Adapting Synchronized-Switch Interface Circuit for Piezoelectric Energy Harvesters
Chamanian, Salar; Muhtaroglu, Ali; Külah, Haluk (Institute of Electrical and Electronics Engineers (IEEE), 2020-01-01)
This paper presents a self-adapting synchronized-switch harvesting (SA-SSH) interface circuit to extract energy from vibration-based piezoelectric energy harvesters (PEHs). The implemented circuit utilizes a novel switching technique to recycle optimum amount of harvested charge on piezoelectric capacitance to strengthen the damping force, and simultaneously achieve load-independent energy extraction with a single inductor. Charge recycling is realized by adjusting extraction time, and optimized through a m...
An Electromagnetic Micro-Power Generator for Low Frequency Vibrations with Tunable Resonance
Türkyılmaz, Serhan; Muhtaroglu, A.; Külah, Haluk (2011-09-07)
This paper presents an electromagnetic (EM) micro-power generator with tunable resonance frequency which can harvest energy from low frequency environmental vibrations. The reported power generator up-converts low frequency environmental vibrations before mechanical-to-electrical energy conversion by utilizing two diaphragms with different resonance frequencies. Power is generated through electromagnetic induction by a magnet attached to the low frequency diaphragm, and a 50 turn, 2.1 Omega coil, and a magn...
Citation Formats
I. Sari, T. Balkan, and H. Külah, “AN ELECTROMAGNETIC MICRO POWER GENERATOR FOR LOW FREQUENCY ENVIRONMENTAL VIBRATIONS BASED ON THE FREQUENCY UP-CONVERSION TECHNIQUE,” 2009, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/39135.