Event horizon detecting invariants

Download
2020-04-14
Some judiciously chosen local curvature scalars can be used to invariantly characterize event horizons of black holes inD > 3 dimensions, but they fail for the three dimensional Banados-Teitelboim-Zanelli (BTZ) black hole since all curvature invariants are constant. Here we provide an invariant characterization of the event horizon of the BTZ black hole using the curvature invariants of codimension one hypersurfaces instead of the full spacetime. Our method is also applicable to black holes in generic dimensions but is most efficient in three, four, and five dimensions. We give four dimensional Kerr, five dimensional Myers-Perry and three dimensional warped-anti-de Sitter, and the three dimensional asymptotically flat black holes as examples.
PHYSICAL REVIEW D

Suggestions

Exact formulas for spherical photon orbits around Kerr black holes
Tavlayan, Aydın; Tekin, Bayram (American Physical Society (APS), 2020-11-01)
Exact formulas relating the radii of the spherical photon orbits to the black hole's rotation parameter and the effective inclination angle of the orbit have been known only for equatorial and polar orbits up to now. Here we provide exact formulas for nonequatorial orbits that lie between these extreme limits. For a given rotation parameter of the black hole, there is a critical inclination angle below which there are four null photon orbits two of which are in the exterior region. At the critical angle, th...
Neutrino oscillations induced by spacetime torsion
Adak, M; Dereli, T; Ryder, LH (IOP Publishing, 2001-04-21)
The gravitational neutrino oscillation problem is studied by considering the Dirac Hamiltonian in a Riemann-Cartan spacetime and calculating the dynamical phase. Torsion contributions which depend on the spin direction of the mass eigenstates are found. These effects are of the order of Planck scales.
Energy distribution in Reissner-Nordstrom anti-de Sitter black holes in the Moller prescription
Salti, M.; Aydogdu, O. (Springer Science and Business Media LLC, 2006-07-01)
The energy (due to matter plus fields including gravity) distribution of the Reissner-Nordstrom anti-de Sitter (RN AdS) black holes is studied by using the Moller energy-momentum definition in general relativity. This result is compared with the energy expression obtained by using the Einstein and Tolman complexes. The total energy depends on the black hole mass M and charge Q and the cosmological constant A. The energy distribution of the RN AdS is also calculated by using the M phi ller prescription in te...
Symmetric Surface Momentum and Centripetal Force for a Particle on a Curved Surface
Shikakhwa, M. S. (IOP Publishing, 2018-09-01)
The Hermitian surface momentum operator for a particle confined to a 2D curved surface spanned by orthogonal coordinates and embedded in 3D space is expressed as a symmetric expression in derivatives with respect to the surface coordinates and so is manifestly along the surface. This is an alternative form to the one reported in the literature and usually named geometric momentum, which has a term proportional to the mean curvature along the direction normal to the surface, and so "apparently" not along the...
More on the classical double copy in three spacetime dimensions
Gumus, Mehmet Kemal; Alkaç, Gökhan (American Physical Society (APS), 2020-07-01)
It is well known that general relativity in three spacetime dimensions (3D) has no well-defined Newtonian limit. Recently, a static solution mimicking the behavior of the expected Newtonian potential has been found by studying the classical double copy of a point charge in gauge theory [M. Carrillo Gonzlez, B. Melcher, K. Ratliff, S. Watson, and C. D. White, J. High Energy Phys. 07 (2019) 167.]. This is the first example where the vacuum solution in the gauge theory leads to a nonvacuum solution on the grav...
Citation Formats
A. Tavlayan and B. Tekin, “Event horizon detecting invariants,” PHYSICAL REVIEW D, pp. 0–0, 2020, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/34782.