Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Heuristics for multi-item two-echelon spare parts inventory control subject to aggregate and individual service measures
Date
2017-01-01
Author
Topan, Engin
Bayındır, Zeynep Pelin
Tan, Tarkan
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
194
views
0
downloads
Cite This
We consider a multi-item two-echelon spare parts inventory system in which the central warehouse operates under a (Q, R) policy and local warehouses implement (S-1,S) policy. The objective is to find the policy parameters minimizing expected system-wide inventory holding and fixed ordering subject to aggregate and individual response time constraints. Using an exact evaluation we provide a very efficient and effective heuristic, and also a tight lower bound for real-world, large-scale two-echelon spare parts inventory problems. An extensive numerical study reveals that as the number of parts increases - which is usually the case in practice - the relative gap between the cost of the heuristic solution and the lower bound approaches zero. In line with our findings, we show that the heuristic and the lower bound are asymptotically optimal and asymptotically tight, respectively, in the number of parts. In practice, this means we can solve real-life problems with large numbers of items optimally. We propose an alternative approach between system and item approaches, which are based on setting individual and aggregate service level constraints, respectively. Using our alternative approach, we show that it is possible to keep the cost benefit of using aggregate service levels while avoiding long individual response times. We also show that the well-known sequential determination of policy parameters, i.e., determining the batch sizes first, and then finding the other policy parameters using those batch sizes, which is known for its high performance in single-item models, performs relatively poor for multi-item systems.
Subject Keywords
Management Science and Operations Research
,
Modelling and Simulation
,
Information Systems and Management
URI
https://hdl.handle.net/11511/34837
Journal
EUROPEAN JOURNAL OF OPERATIONAL RESEARCH
DOI
https://doi.org/10.1016/j.ejor.2016.06.012
Collections
Department of Industrial Engineering, Article
Suggestions
OpenMETU
Core
An exact solution procedure for multi-item two-echelon spare parts inventory control problem with batch ordering in the central warehouse
Topan, Engin; Bayındır, Zeynep Pelin; Tan, Tarkan (Elsevier BV, 2010-09-01)
We consider a multi-item two-echelon inventory system in which the central warehouse operates under a (Q, R) policy, and the local warehouses implement basestock policy. An exact solution procedure is proposed to find the inventory control policy parameters that minimize the system-wide inventory holding and fixed ordering cost subject to an aggregate mean response time constraint at each facility.
Heuristic approaches for solid transportation-p-facility location problem
Das, Soumen Kumar; Roy, Sankar Kumar; Weber, Gerhard Wilhelm (Springer Science and Business Media LLC, 2020-09-01)
Determining optimum places for the facilities and optimum transportation from existing sites to the facilities belongs to the main problems in supply chain management. Thesolid transportation-p-facility location problem(ST-p-FLP) is an integration between thefacility location problemand thesolid transportation problem(STP). This paper delineates the ST-p-FLP, a generalization of the classical STP in which location ofp-potential facility sites are sought so that the total transportation cost by means of conv...
The One-Warehouse Multiretailer Problem with an Order-Up-To Level Inventory Policy
Solyali, Oguz; Süral, Haldun; Denizel, Meltem (Wiley, 2010-10-01)
We consider a two-level system in which a warehouse manages the inventories of multiple retailers. Each retailer employs an order-up-to level inventory policy over T periods and faces an external demand which is dynamic and known. A retailer's inventory should be raised to its maximum limit when replenished. The problem is to jointly decide on replenishment times and quantities of warehouse and retailers so as to minimize the total costs in the system. Unlike the case in the single level lot-sizing problem,...
Considering manufacturing cost and scheduling performance on a CNC turning machine
Gürel, Sinan (Elsevier BV, 2007-02-16)
A well known industry application that allows controllable processing times is the manufacturing operations on CNC machines. For each turning operation as an example, there is a nonlinear relationship between the manufacturing cost and its required processing time on a CNC turning machine. If we consider total manufacturing cost (F-1) and total weighted completion time (F-2) objectives simultaneously on a single CNC machine, making appropriate processing time decisions is as critical as making job sequencin...
A new approximate evaluation method for two-echelon inventory systems with emergency shipments
Oezkan, Erhun; VAN HOUTUM, Geert-Jan; Serin, Yaşar Yasemin (Springer Science and Business Media LLC, 2015-01-01)
We consider the inventory control of repairable spare parts in a network consisting of a central warehouse, a central repair facility, and multiple local warehouses. Demands for spare parts occur at the local warehouses. If a local warehouse is out of stock, then an arriving demand is satisfied by an emergency shipment from the central warehouse or the central repair facility. Such emergency shipments are common practice for networks that support technical systems with high downtime costs. We develop a new ...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
E. Topan, Z. P. Bayındır, and T. Tan, “Heuristics for multi-item two-echelon spare parts inventory control subject to aggregate and individual service measures,”
EUROPEAN JOURNAL OF OPERATIONAL RESEARCH
, pp. 126–138, 2017, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/34837.