A new approximate evaluation method for two-echelon inventory systems with emergency shipments

2015-01-01
Oezkan, Erhun
VAN HOUTUM, Geert-Jan
Serin, Yaşar Yasemin
We consider the inventory control of repairable spare parts in a network consisting of a central warehouse, a central repair facility, and multiple local warehouses. Demands for spare parts occur at the local warehouses. If a local warehouse is out of stock, then an arriving demand is satisfied by an emergency shipment from the central warehouse or the central repair facility. Such emergency shipments are common practice for networks that support technical systems with high downtime costs. We develop a new evaluation method that provides accurate approximations for the key performance measures like fractions of demands supplied by the local warehouses or emergency shipments. The method can be easily incorporated in existing (greedy) heuristic optimization methods. Our method outperforms the approximate evaluation method of Muckstadt and Thomas (Manag. Sci. 26:483-494, 1980), as we show via a numerical analysis. Finally, we show that the performance of the system is virtually insensitive to the leadtime distribution of repairs at the central repair facility.
ANNALS OF OPERATIONS RESEARCH

Suggestions

An exact solution procedure for multi-item two-echelon spare parts inventory control problem with batch ordering in the central warehouse
Topan, Engin; Bayındır, Zeynep Pelin; Tan, Tarkan (Elsevier BV, 2010-09-01)
We consider a multi-item two-echelon inventory system in which the central warehouse operates under a (Q, R) policy, and the local warehouses implement basestock policy. An exact solution procedure is proposed to find the inventory control policy parameters that minimize the system-wide inventory holding and fixed ordering cost subject to an aggregate mean response time constraint at each facility.
Heuristics for multi-item two-echelon spare parts inventory control subject to aggregate and individual service measures
Topan, Engin; Bayındır, Zeynep Pelin; Tan, Tarkan (Elsevier BV, 2017-01-01)
We consider a multi-item two-echelon spare parts inventory system in which the central warehouse operates under a (Q, R) policy and local warehouses implement (S-1,S) policy. The objective is to find the policy parameters minimizing expected system-wide inventory holding and fixed ordering subject to aggregate and individual response time constraints. Using an exact evaluation we provide a very efficient and effective heuristic, and also a tight lower bound for real-world, large-scale two-echelon spare part...
Heuristic approaches for solid transportation-p-facility location problem
Das, Soumen Kumar; Roy, Sankar Kumar; Weber, Gerhard Wilhelm (Springer Science and Business Media LLC, 2020-09-01)
Determining optimum places for the facilities and optimum transportation from existing sites to the facilities belongs to the main problems in supply chain management. Thesolid transportation-p-facility location problem(ST-p-FLP) is an integration between thefacility location problemand thesolid transportation problem(STP). This paper delineates the ST-p-FLP, a generalization of the classical STP in which location ofp-potential facility sites are sought so that the total transportation cost by means of conv...
The One-Warehouse Multiretailer Problem with an Order-Up-To Level Inventory Policy
Solyali, Oguz; Süral, Haldun; Denizel, Meltem (Wiley, 2010-10-01)
We consider a two-level system in which a warehouse manages the inventories of multiple retailers. Each retailer employs an order-up-to level inventory policy over T periods and faces an external demand which is dynamic and known. A retailer's inventory should be raised to its maximum limit when replenished. The problem is to jointly decide on replenishment times and quantities of warehouse and retailers so as to minimize the total costs in the system. Unlike the case in the single level lot-sizing problem,...
Analyzing the effects of inventory cost setting rules in a disassembly and recovery environment
Akcali, Elif; Bayındır, Zeynep Pelin (Informa UK Limited, 2008-01-01)
In this study we consider a disassembly and recovery facility receiving end-of-life products and facing demand for a specific part that is disassembled from the product and then recovered. The disassembly and recovery operations can be either performed before hand, or upon customer arrival. In the latter case, a discount on the selling price is applied to compensate the customer for waiting for the completion of the disassembly and recovery operations. One of the dificulties faced in planning for such a sys...
Citation Formats
E. Oezkan, G.-J. VAN HOUTUM, and Y. Y. Serin, “A new approximate evaluation method for two-echelon inventory systems with emergency shipments,” ANNALS OF OPERATIONS RESEARCH, pp. 147–169, 2015, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/43494.