Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Haptic perception of shape and hollowness of deformable objects using the Anthrobot-III robot hand
Date
1999-01-01
Author
Erkmen, İsmet
Erkmen, Aydan Müşerref
Tekkaya, AE
Pasinlioglu, T
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
63
views
0
downloads
Cite This
This article presents a methodology for the haptic perception of contour shapes of almost planar objects grasped by a five-fingered robot hand as well as the detection of any object cavity. The originality of our approach resides in (1) finding the reaction force patterns at the fingertips of a five-fingered robot hand that grasps different deformable objects (forward problem) and (2) using these contact force patterns to find the shapes of grasped objects (inverse problem) and (3) to determine material defects such as holes in an object with identified shape. Contact force patterns are generated in the forward problem by the finite element method (FEM) and the shape identification in the inverse problem is realized by a supervised neural network architecture using the backpropagation algorithm. Following shape identification, detection of holes is performed by clustering actual and prototypical contact force patterns using the self-organizing feature maps of neural gas networks as an unsupervised hole-screening method. (C) 1999 John Wiley & Sons, Inc.
URI
https://hdl.handle.net/11511/34849
Journal
JOURNAL OF ROBOTIC SYSTEMS
DOI
https://doi.org/10.1002/(sici)1097-4563(199901)16:1<9::aid-rob2>3.0.co;2-#
Collections
Department of Electrical and Electronics Engineering, Article
Suggestions
OpenMETU
Core
Compressive Sensing Imaging with a Graphene Modulator at THz Frequency in Transmission Mode
Özkan, Vedat Ali; Takan, Taylan; Kakenov, N.; KOCABAŞ, COŞKUN; Altan, Hakan (2016-09-30)
In this study we demonstrate compressive sensing imaging with a unique graphene based optoelectronic device which allows us to modulate the THz field through an array of columns or rows distributed throughout its face.
Kinematic model calibration of a 7-DOF capstan-driven haptic device for pose and force control accuracy improvement
Baser, Ozgur; Konukseven, Erhan İlhan (SAGE Publications, 2013-01-01)
The literature on kinematic calibration of industrial robots and haptic devices suggests that proper model calibration is indispensable for accurate pose estimation and precise force control. Despite the variety of studies in the literature, the effects of transmission errors on positioning accuracy or the enhancement of force control by kinematic calibration is not fully studied. In this article, an easy to implement kinematic calibration method is proposed for the systems having transmission errors. The p...
The Effect of Labeled/Unlabeled Prior Information for Masseter Segmentation
Tabar, Yousef Rezaei; Ulusoy, İlkay (Hindawi Limited, 2013-01-01)
Several segmentation methods are implemented and applied to segment the facial masseter tissue from magnetic resonance images. The common idea for all methods is to take advantage of prior information from different MR images belonging to different individuals in segmentation of a test MR image. Standard atlas-based segmentation methods and probabilistic segmentation methods based on Markov random field use labeled prior information. In this study, a new approach is also proposed where unlabeled prior infor...
Room-temperature scanning Hall probe microscope (RT-SHPM) imaging of garnet films using new high-performance InSb sensors
Oral, Ahmet; DEDE, M; MASUDA, H; OKAMOTO, A; SHİBASAKİ, I; SANDHU, A (Institute of Electrical and Electronics Engineers (IEEE), 2002-09-01)
High-performance InSb micro-HaIl sensors were fabricated by optical lithography and incorporated in a room-temperature scanning Hall probe microscope for imaging of localized magnetic fluctuations in close proximity to the surfaces of crystalline uniaxial garnet films. The room-temperature noise figure of the InSb sensors was 6-10 mG/v/Hz, which is an order of magnitude better than GaAs-AlGaAs two-dimensional electron gas sensors used to date.
Visualisation of cakes differing in oil content with magnetic resonance imaging
Kırtıl, Emrah; Aydogdu, AYÇA; Bulut, Elif Yildiz; Tatar, Betul Cilek; Öztop, Halil Mecit (Informa UK Limited, 2017-01-01)
Magnetic resonance imaging (MRI) is a non-invasive imaging technique that can visualise samples' interior by using the signal coming from mobile protons. The aim of this study was to examine the effects of oil content and peanut/raisin addition on cake quality and to illustrate the power of MRI in analysis of moisture and oil distribution. For this purpose, MR images were acquired with a spin echo sequence and relaxation times T-1 and T-2, and moisture content and firmness of cakes were measured. High oil c...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
İ. Erkmen, A. M. Erkmen, A. Tekkaya, and T. Pasinlioglu, “Haptic perception of shape and hollowness of deformable objects using the Anthrobot-III robot hand,”
JOURNAL OF ROBOTIC SYSTEMS
, pp. 9–24, 1999, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/34849.