Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Drug repositioning as an effective therapy for protease-activated receptor 2 inhibition
Date
2019-02-01
Author
Saqib, Uzma
Savai, Rajkumar
Liu, DongFang
Banerjee, Sreeparna
Baig, Mirza S.
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
342
views
0
downloads
Cite This
Proteinase-activated receptor 2 (PAR-2) is a G protein-coupled receptor activated by both trypsin and a specific agonist peptide, SLIGKV-NH2. It has been linked to various pathologies, including pain and inflammation. Several peptide and peptidomimetic agonizts for PAR-2 have been developed exhibiting high potency and efficacy. However, the number of PAR-2 antagonists is smaller. We screened the Food and Drug Administration library of approved compounds to retrieve novel antagonists for repositioning in the PAR-2 structure. The most efficacious compound bicalutamide bound to the PAR-2 binding groove near the extracellular domain as observed in the in silico studies. Further, it showed reduced Ca2+ release in trypsin activated cells in a dose-dependent manner. Hence, bicalutamide is a novel and potent PAR-2 antagonist which could be therapeutically useful in blocking multiple pathways diverging from PAR-2 signaling. Further, the novel scaffold of bicalutamide represents a new molecular structure for PAR-2 antagonism and can serve as a basis for further drug development.
Subject Keywords
Cell Biology
,
Biochemistry
,
Molecular Biology
URI
https://hdl.handle.net/11511/34865
Journal
JOURNAL OF CELLULAR BIOCHEMISTRY
DOI
https://doi.org/10.1002/jcb.27334
Collections
Department of Biology, Article
Suggestions
OpenMETU
Core
The NF-kappa B target genes ICAM-1 and VCAM-1 are differentially regulated during spontaneous differentiation of Caco-2 cells
Astarci, Erhan; Sade, Asli; Cimen, Ismail; SAVAŞ, BERNA; Banerjee, Sreeparna (Wiley, 2012-08-01)
Intestinal epithelial differentiation entails the formation of highly specialized cells with specific absorptive, secretory, digestive and immune functions. Cellcell and cellmicroenvironment interactions appear to be crucial in determining the outcome of the differentiation process. Using the Caco-2 cell line, which undergoes spontaneous re-differentiation when grown past confluency, we observed a loss of VCAM-1 (vascular cell adhesion molecule 1) mRNA expression, while ICAM-1 (intercellular cell adhesion m...
The effect of cysteine-43 mutation on thermostability and kinetic properties of citrate synthase from Thermoplasma acidophilum
Kocabıyık, Semra; Russel, RJM; Danson, MJ; Hough, DW (Elsevier BV, 1996-07-05)
In this study, we have substituted serine-43 by cysteine in the recombinant citrate synthase from a moderately thermophilic Archaeon Thermoplasma acidophilum, for site-specific attachment of labels and have investigated the effects of this mutation on the biochemical properties and thermal stability of the enzyme. Both wild-type and the mutant enzymes were purified to homogenity using affinity chromatography on Matrex Gel Red A. The mutant Thermoplasma citrate synthase is very similar to wild-type citrate s...
15-lipoxygenase-1 exerts its tumor suppressive role by inhibiting nuclear factor-kappa B via activation of PPAR gamma.
Cimen, I; Astarci, E; Banerjee, Sreeparna (Wiley, 2011-09-01)
15-Lipoxygenase-1 (15-LOX-1) is an enzyme of the inflammatory eicosanoid pathway whose expression is known to be lost in colorectal cancer (CRC). We have previously shown that reintroduction of the gene in CRC cell lines slows proliferation and induces apoptosis (Cimen et al. [2009] Cancer Sci 100: 2283-2291). We have hypothesized that 15-LOX-1 may be anti-tumorigenic by the inhibition of the antiapoptotic inflammatory transcription factor nuclear factor kappa B. We show here that ectopic expression of 15-L...
Molecular investigation of ptz-induced epileptic activities in rat brain cell membranes and the effects of vigabatrin
Görgülü Türker, Sevgi; Severcan, Feride; Department of Biology (2009)
The epilepsies are a heterogenous group of symptom complexes, whose common features is the recurrence of seizures. There is no certain therapy for epilepsy. In order to promote new advances for the prevention of epilepsy the molecular mechanism of epileptic activities should be clarified. In the present study the goal is to obtain information for molecular mechanism of epilepsy. To achieve this, molecular alterations from pentylenetetrazol (PTZ)-induced epileptic activities on rat brain tissue and cell memb...
Interaction of the cholesterol reducing agent simvastatin with zwitterionic DPPC and charged DPPG phospholipid membranes
Sariisik, Ediz; KOÇAK, MUSTAFA; Baloglu, Fatma Kucuk; Severcan, Feride (Elsevier BV, 2019-04-01)
Simvastatin is a lipid-lowering drug in the pharmaceutical group statins. Interaction of a drug with lipids may define its role in the system and be critical for its pharmacological activity. We examined the interactions of simvastatin with zwitterionic dipalmitoyl phosphatidylcholine (DPPC) and anionic dipalmitoyl phosphatidylglycerol (DPPG) multilamellar vesicles (MLVs) as a function of temperature at different simvastatin concentrations using Fourier transform infrared (FTIR) spectroscopy and differentia...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
U. Saqib, R. Savai, D. Liu, S. Banerjee, and M. S. Baig, “Drug repositioning as an effective therapy for protease-activated receptor 2 inhibition,”
JOURNAL OF CELLULAR BIOCHEMISTRY
, pp. 1522–1526, 2019, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/34865.