Interaction of the cholesterol reducing agent simvastatin with zwitterionic DPPC and charged DPPG phospholipid membranes

2019-04-01
Sariisik, Ediz
KOÇAK, MUSTAFA
Baloglu, Fatma Kucuk
Severcan, Feride
Simvastatin is a lipid-lowering drug in the pharmaceutical group statins. Interaction of a drug with lipids may define its role in the system and be critical for its pharmacological activity. We examined the interactions of simvastatin with zwitterionic dipalmitoyl phosphatidylcholine (DPPC) and anionic dipalmitoyl phosphatidylglycerol (DPPG) multilamellar vesicles (MLVs) as a function of temperature at different simvastatin concentrations using Fourier transform infrared (FTIR) spectroscopy and differential scanning calorimetry (DSC). The FTIR results indicate that the effect of simvastatin on membrane structure and dynamics depends on the type of membrane lipids. In anionic DPPG MLVs, high simvastatin concentrations (12, 18, 24 mol%) change the position of the CH2 antisymmetric stretching mode to lower wavenumber values, implying an ordering effect. However, in zwitterionic DPPC MLVs, high concentrations of simvastatin disorder systems both in the gel and liquid crystalline phases. Moreover, in DPPG and DPPC MLVs, simvastatin has opposite dual effects on membrane dynamics. The bandwidth of the CH2 antisymmetric stretching modes increases in DPPG MLVs, implying an increase in the dynamics, whereas it decreases in DPPC MLVs. Simvastatin caused broadening of the phase transition peaks and formation of shoulders on the phase transition peaks in DSC curves, indicating multi domain formations in the phospholipid membranes. Because physical features of membranes such as lipid order and fluidity may be changed with the bioactivity of drugs, opposing effects of simvastatin on the order and dynamics of neutral and charged phospholipids may be critical to deduce the action mechanism of the drug and estimate drug-membrane interactions.
BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES

Suggestions

Drug repositioning as an effective therapy for protease-activated receptor 2 inhibition
Saqib, Uzma; Savai, Rajkumar; Liu, DongFang; Banerjee, Sreeparna; Baig, Mirza S. (Wiley, 2019-02-01)
Proteinase-activated receptor 2 (PAR-2) is a G protein-coupled receptor activated by both trypsin and a specific agonist peptide, SLIGKV-NH2. It has been linked to various pathologies, including pain and inflammation. Several peptide and peptidomimetic agonizts for PAR-2 have been developed exhibiting high potency and efficacy. However, the number of PAR-2 antagonists is smaller. We screened the Food and Drug Administration library of approved compounds to retrieve novel antagonists for repositioning in the...
The effect of cysteine-43 mutation on thermostability and kinetic properties of citrate synthase from Thermoplasma acidophilum
Kocabıyık, Semra; Russel, RJM; Danson, MJ; Hough, DW (Elsevier BV, 1996-07-05)
In this study, we have substituted serine-43 by cysteine in the recombinant citrate synthase from a moderately thermophilic Archaeon Thermoplasma acidophilum, for site-specific attachment of labels and have investigated the effects of this mutation on the biochemical properties and thermal stability of the enzyme. Both wild-type and the mutant enzymes were purified to homogenity using affinity chromatography on Matrex Gel Red A. The mutant Thermoplasma citrate synthase is very similar to wild-type citrate s...
Structural and functional characterization of simvastatin-induced myotoxicity in different skeletal muscles
Ozek, Nihal Simsek; Bal, I. Burak; SARA, MEHMET YILDIRIM; Onur, Rustu; Severcan, Feride (Elsevier BV, 2014-01-01)
Background: Statins are the most commonly used drugs for the treatment of hypercholesterolemia. Their most frequent side effect is myotoxicity. To date, it remains unclear whether statins preferentially induce myotoxicity in fast- or in slow-twitch muscles. Therefore, we investigated these effects on fast- (extensor digitorum longus; EDL), slow- (soleus; SOL), and mixed-twitch muscles (diaphragm; DIA) in rats by comparing their contractile and molecular structural properties.
Effect of gemcitabine and retinoic acid loaded PAMAM dendrimer-coated magnetic nanoparticles on pancreatic cancer and stellate cell lines
Yalcin, Serap; Erkan, Mert; Unsoy, Gozde; Parsian, Maryam; Kleeff, Jorg; Gündüz, Ufuk (2014-07-01)
Gemcitabine is an anticancer drug used in the treatment of different cancer types, including pancreatic ductal adenocarcinoma. The maximum tolerated dose in humans is restricted by its side effects on healty cells. Furthermore, the fibrotic stroma produced by the pancreatic stellate cells prevents effective delivery of chemotherapeutic agents providing a safe-haven for the cancer cells. This becomes more of a problem considering the short half-life of this drug. Magnetic nanoparticle-based targeted drug del...
Effect of protein aggregation in the aqueous phase on the binding of membrane proteins to membranes
Doebler, R; Basaran, N; Goldston, H; Holloway, PW (Elsevier BV, 1999-02-01)
Analysis of the binding of hydrophobic peptides or proteins to membranes generally assumes that the solute is monomeric in both the aqueous phase and the membrane. Simulations were performed to examine the effect of solute self-association in the aqueous phase on the binding of monomeric solute to lipid vesicles. Aggregation lowered the initial concentration of monomeric solute, which was then maintained at a relatively constant value at the expense of the aggregated solute, as the lipid concentration was i...
Citation Formats
E. Sariisik, M. KOÇAK, F. K. Baloglu, and F. Severcan, “Interaction of the cholesterol reducing agent simvastatin with zwitterionic DPPC and charged DPPG phospholipid membranes,” BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES, pp. 810–818, 2019, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/56602.