Interaction of the cholesterol reducing agent simvastatin with zwitterionic DPPC and charged DPPG phospholipid membranes

2019-04-01
Sariisik, Ediz
KOÇAK, MUSTAFA
Baloglu, Fatma Kucuk
Severcan, Feride
Simvastatin is a lipid-lowering drug in the pharmaceutical group statins. Interaction of a drug with lipids may define its role in the system and be critical for its pharmacological activity. We examined the interactions of simvastatin with zwitterionic dipalmitoyl phosphatidylcholine (DPPC) and anionic dipalmitoyl phosphatidylglycerol (DPPG) multilamellar vesicles (MLVs) as a function of temperature at different simvastatin concentrations using Fourier transform infrared (FTIR) spectroscopy and differential scanning calorimetry (DSC). The FTIR results indicate that the effect of simvastatin on membrane structure and dynamics depends on the type of membrane lipids. In anionic DPPG MLVs, high simvastatin concentrations (12, 18, 24 mol%) change the position of the CH2 antisymmetric stretching mode to lower wavenumber values, implying an ordering effect. However, in zwitterionic DPPC MLVs, high concentrations of simvastatin disorder systems both in the gel and liquid crystalline phases. Moreover, in DPPG and DPPC MLVs, simvastatin has opposite dual effects on membrane dynamics. The bandwidth of the CH2 antisymmetric stretching modes increases in DPPG MLVs, implying an increase in the dynamics, whereas it decreases in DPPC MLVs. Simvastatin caused broadening of the phase transition peaks and formation of shoulders on the phase transition peaks in DSC curves, indicating multi domain formations in the phospholipid membranes. Because physical features of membranes such as lipid order and fluidity may be changed with the bioactivity of drugs, opposing effects of simvastatin on the order and dynamics of neutral and charged phospholipids may be critical to deduce the action mechanism of the drug and estimate drug-membrane interactions.
BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES

Suggestions

Structural and functional characterization of simvastatin-induced myotoxicity in different skeletal muscles
Ozek, Nihal Simsek; Bal, I. Burak; SARA, MEHMET YILDIRIM; Onur, Rustu; Severcan, Feride (Elsevier BV, 2014-01-01)
Background: Statins are the most commonly used drugs for the treatment of hypercholesterolemia. Their most frequent side effect is myotoxicity. To date, it remains unclear whether statins preferentially induce myotoxicity in fast- or in slow-twitch muscles. Therefore, we investigated these effects on fast- (extensor digitorum longus; EDL), slow- (soleus; SOL), and mixed-twitch muscles (diaphragm; DIA) in rats by comparing their contractile and molecular structural properties.
Low dose simvastatin induces compositional, structural and dynamic changes in rat skeletal extensor digitorum longus muscle tissue
Ozek Simsek, Nihal; Sara, Yildirim; Onur, Rustu; Severcan, Feride (Portland Press Ltd., 2009-10-6)
<jats:p>Statins are commonly used drugs in the treatment of hypercholesterolaemia. There are many adverse effects of statins on skeletal muscle, but the underlying mechanisms remain unclear. In the present study, the effects of low dose (20 mg/kg) simvastatin, a lipophilic statin, on rat EDL muscle (extensor digitorum longus muscle) were investigated at the molecular level using FTIR (Fourier-transform infrared) spectroscopy. FTIR spectroscopy allows us rapid and sensitive determination of functional groups...
Modulation of human flavin-containing monooxygenase 3 activity by tricyclic antidepressants and other agents: Importance of residue 428
Adalı, Orhan; Philpot, RM (Elsevier BV, 1998-10-01)
Human flavin-containing monooxygenase 3 (FMO3) is subject to modulation by tricyclic antidepressants and other agents. Imipramine activates FMO3-catalyzed metabolism of methimazole at all substrate concentrations tested. This distinguishes FMO3 from rabbit FMO1 and FMO2, which are activated at high substrate concentration and inhibited at low substrate concentration, and pig FMO1, which is inhibited at all substrate concentrations. The response of FMO3 is also unique in that chlorpromazine is markedly more ...
Drug repositioning as an effective therapy for protease-activated receptor 2 inhibition
Saqib, Uzma; Savai, Rajkumar; Liu, DongFang; Banerjee, Sreeparna; Baig, Mirza S. (Wiley, 2019-02-01)
Proteinase-activated receptor 2 (PAR-2) is a G protein-coupled receptor activated by both trypsin and a specific agonist peptide, SLIGKV-NH2. It has been linked to various pathologies, including pain and inflammation. Several peptide and peptidomimetic agonizts for PAR-2 have been developed exhibiting high potency and efficacy. However, the number of PAR-2 antagonists is smaller. We screened the Food and Drug Administration library of approved compounds to retrieve novel antagonists for repositioning in the...
Effect of gemcitabine and retinoic acid loaded PAMAM dendrimer-coated magnetic nanoparticles on pancreatic cancer and stellate cell lines
Yalcin, Serap; Erkan, Mert; Unsoy, Gozde; Parsian, Maryam; Kleeff, Jorg; Gündüz, Ufuk (2014-07-01)
Gemcitabine is an anticancer drug used in the treatment of different cancer types, including pancreatic ductal adenocarcinoma. The maximum tolerated dose in humans is restricted by its side effects on healty cells. Furthermore, the fibrotic stroma produced by the pancreatic stellate cells prevents effective delivery of chemotherapeutic agents providing a safe-haven for the cancer cells. This becomes more of a problem considering the short half-life of this drug. Magnetic nanoparticle-based targeted drug del...
Citation Formats
E. Sariisik, M. KOÇAK, F. K. Baloglu, and F. Severcan, “Interaction of the cholesterol reducing agent simvastatin with zwitterionic DPPC and charged DPPG phospholipid membranes,” BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES, pp. 810–818, 2019, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/56602.