Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Efficient energy dissipating steel-braced frame to resist seismic loads
Date
2007-07-01
Author
Dicleli, Murat
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
227
views
0
downloads
Cite This
In this research, the seismic performance of a proposed efficient energy dissipating steel-braced frame (EEDBF) in relation to that of a moment-resisting frame (MRF) and chevron braced frame (CBF) is studied. The frame is intended to combine the advantages of MRF and CBF and eliminate most of the disadvantages pertinent to these frames. Nonlinear static pushover, time history, and damage analyses of the three frames are conducted to assess the performance of the EEDBF compared to that of MRF and CBE The analyses results revealed that the EEDBF has a more stable lateral force-deformation behavior compared to CBE The energy dissipation capacity of the EEDBF is comparable to that of the MRF. The drift of the EEDBF at small to medium intensity ground motions is comparable to that of the CBF and smaller than that of the MRF. At high intensity ground motions, the drift of the EEDBF is smaller than those of both CBF and MRF. Furthermore, the EEDBF is found to experience less damage compared to other frames.
Subject Keywords
Mechanical Engineering
,
General Materials Science
,
Mechanics of Materials
,
Civil and Structural Engineering
,
Building and Construction
URI
https://hdl.handle.net/11511/34874
Journal
JOURNAL OF STRUCTURAL ENGINEERING-ASCE
DOI
https://doi.org/10.1061/(asce)0733-9445(2007)133:7(969)
Collections
Department of Engineering Sciences, Article
Suggestions
OpenMETU
Core
Effect of Shear Wall Area to Floor Area Ratio on the Seismic Behavior of Reinforced Concrete Buildings
Burak Bakır, Burcu (American Society of Civil Engineers (ASCE), 2013-11-01)
An analytical study is performed to evaluate the effect of shear wall area to floor area ratio on the seismic behavior of midrise RC structures. For this purpose, 24 midrise building models that have five and eight stories and shear wall ratios ranging between 0.51 and 2.17% in both directions are generated. Then, the behavior of these building models under earthquake loading is examined by carrying out nonlinear time history analyses. In the analyses, seven different ground motion records are applied to th...
Seismic performance of chevron braced steel frames with and without viscous fluid dampers as a function of ground motion and damper characteristics
Dicleli, Murat (Elsevier BV, 2007-08-01)
This study is aimed at comparing the seismic performance of steel chevron braced frames (CBFs) with and without viscous fluid dampers (VFDs) as a function of the intensity and frequency characteristics of the ground motion and VFD parameters. For this purpose, comparative nonlinear time history (NLTH) analyses of single and multiple story CBFs with and without VFDs are conducted using ground motions with various frequency characteristics scaled to represent small, moderate and large intensity earthquakes. A...
Performance Examination of Two Seismic Strengthening Procedures by Pseudodynamic Testing
Kurt, Efe Gokce; Kurç, Özgür; Binici, Barış; Canbay, Erdem; Ozcebe, Guney (American Society of Civil Engineers (ASCE), 2012-01-01)
Pseudodynamic testing was employed to observe the seismic performance of two retrofit methods on two-story, three-bay frame structures. The test frames had hollow clay tile (HCT) infill in the central bay and incorporated the seismic deficiencies of Turkish construction practice, such as use of plain reinforcing bars, low-strength concrete, and insufficient confining steel. Two noninvasive and occupant-friendly retrofit schemes suggested in the Turkish Earthquake Code, namely, use of fiber-reinforced polyme...
Generalized interstory drift spectrum
Miranda, E; Akkar, SD (American Society of Civil Engineers (ASCE), 2006-06-01)
The recently developed drift spectrum is extended to buildings that do not deform laterally like pure shear beams. Similarly to Iwan's drift spectrum, the proposed generalized interstory drift spectrum uses a continuous linear-elastic model to obtain estimates of interstory drift demands in buildings. However, the generalized interstory drift spectrum is based on a continuous model that consists of a combination of a flexural beam and a shear beam, rather than only a shear beam. By modifying one parameter t...
FINITE-ELEMENT ANALYSIS OF PRESTRESSED AND REINFORCED-CONCRETE STRUCTURES
ELMEZAINI, N; CITIPITIOGLU, E (American Society of Civil Engineers (ASCE), 1991-10-01)
A practical and powerful technique for the discrete representation of reinforcement in finite element analysis of prestressed and reinforced concrete structures is presented. Isoparametric quadratic and cubic finite elements with movable nodes are developed utilizing a correction technique for mapping distortion. Reinforcing bars and/or prestressing tendons are modeled independently of the concrete mesh. Perfect or no bond as well as any bond-slip model can easily be represented. The procedure is succes...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
M. Dicleli, “Efficient energy dissipating steel-braced frame to resist seismic loads,”
JOURNAL OF STRUCTURAL ENGINEERING-ASCE
, pp. 969–981, 2007, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/34874.