Generalized interstory drift spectrum

Miranda, E
Akkar, SD
The recently developed drift spectrum is extended to buildings that do not deform laterally like pure shear beams. Similarly to Iwan's drift spectrum, the proposed generalized interstory drift spectrum uses a continuous linear-elastic model to obtain estimates of interstory drift demands in buildings. However, the generalized interstory drift spectrum is based on a continuous model that consists of a combination of a flexural beam and a shear beam, rather than only a shear beam. By modifying one parameter the model used in the proposed generalized interstory drift spectrum can consider lateral deformations varying from those of a flexural beam to those of a shear beam. Hence, it permits us to account for a wide range of modes of deformation that represent more closely those of multistory buildings. The proposed generalized interstory drift spectrum is based on modal analysis techniques that are familiar to structural engineers and uses a damping model that avoids the problems that can occur in the drift spectrum. The generalized interstory drift spectrum is illustrated with various recorded ground motions. The effects of damping, higher modes, and lateral stiffness ratio are investigated and discussed.


Spectral Ground Motion Intensity Based on Capacity and Period Elongation
Kadas, Koray; Yakut, Ahmet; Kazaz, Ilker (American Society of Civil Engineers (ASCE), 2011-03-01)
Ground motion intensity parameters are used to express the relationship between expected structural damage and the seismic forces imposed. The graphical representation of damage probability as a function of ground motion intensity leads to fragility curves that are generally used in loss estimation studies. The most typical parameters used to represent the ground motion intensity are peak ground acceleration, peak ground velocity, spectral acceleration, and spectral displacement. Other parameters obtained f...
Efficient energy dissipating steel-braced frame to resist seismic loads
Dicleli, Murat (American Society of Civil Engineers (ASCE), 2007-07-01)
In this research, the seismic performance of a proposed efficient energy dissipating steel-braced frame (EEDBF) in relation to that of a moment-resisting frame (MRF) and chevron braced frame (CBF) is studied. The frame is intended to combine the advantages of MRF and CBF and eliminate most of the disadvantages pertinent to these frames. Nonlinear static pushover, time history, and damage analyses of the three frames are conducted to assess the performance of the EEDBF compared to that of MRF and CBE The ana...
Evaluation of the Predictive Models for Stiffness, Strength, and Deformation Capacity of RC Frames with Masonry Infill Walls
Turgay, Tahsin; Durmus, Meril Cigdem; Binici, Barış; Ozcebe, Guney (American Society of Civil Engineers (ASCE), 2014-10-01)
Buildings with masonry infill walls (MIWs) in reinforced concrete (RC) frames are commonly used all around the world. It is well known that infill walls may affect the strength, stiffness, and displacement ductility of the structural system. Different approaches have been adopted in different codes and guidelines to consider the stiffness and strength contribution of MIWs on RC frame behavior. This study compares the ability of the existing guidelines to estimate stiffness, strength, and deformability of RC...
ELMEZAINI, N; BALKAYA, C; CITIPITIOGLU, E (American Society of Civil Engineers (ASCE), 1991-06-01)
The linear elastic behavior of frames with nonprismatic members is investigated by using isoparametric plane stress finite elements. It is determined that the conventional methods of analysis for these types of structures lead to erroneous results. Comparison of the fixed end moments, stiffness, and carry-over factors of nonprismatic members available in the literature with those computed by finite element analysis reveals large discrepancies. Based on an extensive study, sources and magnitudes of errors...
Natural periods of steel plate shear wall systems
Topkaya, Cem (Elsevier BV, 2009-03-01)
in most seismic building codes, the design base acceleration is computed using the natural period of vibration of the structure. Design specifications provide empirical formula to estimate the fundamental natural period of a system. In this study a class of steel plate shear walls, that have uniform properties through their height, was considered. The fundamental natural periods of this class of structures were determined using three dimensional geometrically linear finite element analyses and were compared...
Citation Formats
E. Miranda and S. Akkar, “Generalized interstory drift spectrum,” JOURNAL OF STRUCTURAL ENGINEERING-ASCE, pp. 840–852, 2006, Accessed: 00, 2020. [Online]. Available: