Modeling and simulation of viscous electro-active polymers

2014-11-01
Vogel, Franziska
Göktepe, Serdar
Steinmann, Paul
Kuhl, Ellen
Electro-active materials are capable of undergoing large deformation when stimulated by an electric field. They can be divided into electronic and ionic electro-active polymers (EAPs) depending on their actuation mechanism based on their composition. We consider electronic EAPs, for which attractive Coulomb forces or local re-orientation of polar groups cause a bulk deformation. Many of these materials exhibit pronounced visco-elastic behavior. Here we show the development and implementation (o)f a constitutive model, which captures the influence of the electric field on the visco-elastic response within a geometrically non-linear finite element framework. The electric field affects not only the equilibrium part of the strain energy function, but also the viscous part. To adopt the familiar additive split of the strain from the small strain setting, we formulate the governing equations in the logarithmic strain space and additively decompose the logarithmic strain into elastic and viscous parts. We show that the incorporation of the electric field in the viscous response significantly alters the relaxation and hysteresis behavior of the model. Our parametric study demonstrates that the model is sensitive to the choice of the electro-viscous coupling parameters. We simulate several actuator structures to illustrate the performance of the method in typical relaxation and creep scenarios. Our model could serve as a design tool for micro-electro-mechanical systems, microfluidic devices, and stimuli-responsive gels such as artificial skin, tactile displays, or artificial muscle. (C) 2014 Elsevier Masson SAS. All rights reserved.
EUROPEAN JOURNAL OF MECHANICS A-SOLIDS

Suggestions

Radial motion of highly conducting sphere in magnetic field
Gurcan, OD; Mirnov, VV; Ucer, D (2000-05-01)
Radial motion of a highly conducting sphere in external magnetic field is considered. It both perturbs the external magnetic field and generates an electric field. Exact analytic solution has been obtained previously for a uniformly expanding sphere. In the present paper a new exact solution is derived which is valid not only for expansion but for contraction as well. It allows us to calculate analytically the total electromagnetic energy irradiated by the sphere involved in periodical radial motion with ar...
Implementation and comparison of reconstruction algorithms for magnetic resonance-electric impedance tomography (mr-eit)
Martin Lorca, Dario; Eyüboğlu, Behçet Murat; Department of Biomedical Engineering (2007)
In magnetic resonance electrical impedance tomography (MR-EIT), crosssectional images of a conductivity distribution are reconstructed. When current is injected to a conductor, it generates a magnetic field, which can be measured by a magnetic resonance imaging (MRI) scanner. MR-EIT reconstruction algorithms can be grouped into two: current density based reconstruction algorithms (Type-I) and magnetic flux density based reconstruction algorithms (Type-II). The aim of this study is to implement a series of r...
Design and realization of a hybrid medical imaging system: harmonic motion microwave doppler imaging
Tafreshi, Azadeh Kamali; Gençer, Nevzat Güneri; Department of Electrical and Electronics Engineering (2016)
Harmonic Motion Microwave Doppler Imaging (HMMDI) is a novel imaging modality to image electrical and mechanical properties of body tissues. This modality is recently proposed by the researchers in the METU EEE department for early-stage diagnosis of cancerous tissues. The main goal of this thesis study is to contribute various stages of the HMMDI's development processes. Speci cally, phantom development, dielectric and elastic characterization of the phantoms, experimental system realization, phantom exper...
Analysis of reconstruction performance of magnetic resonance conductivity tensor imaging (MRCTI) using simulated measurements
DEĞİRMENCİ, EVREN; Eyüboğlu, Behçet Murat (2017-01-01)
Magnetic resonance conductivity tensor imaging (MRCTI) was proposed recently to produce electrical conductivity images of anisotropic tissues. Similar to magnetic resonance electrical impedance tomography (MREIT), MRCTI uses magnetic field and boundary potential measurements obtained utilizing magnetic resonance imaging techniques. MRCTI reconstructs tensor images of anisotropic conductivity whereas MREIT reconstructs isotropic conductivity images. In this study, spatial resolution and linearity of five rec...
Data acquisition system for Lorentz force electrical impedance tomography using magnetic field measurements
Kaboutari, Keivan; Gençer, Nevzat Güneri; Department of Electrical and Electronics Engineering (2017)
Lorentz Force Electrical Impedance Tomography (LFEIT) is a novel imaging modality to image electrical conductivity properties of biological tissues. This modality is recently proposed for early stage diagnosis of cancerous tissues. The main aim of this thesis study is to develop a data acquisition system for LFEIT. Design of contactless receiver sensor, static magnetic field generation (0.56 T is generated by permanent neodymium magnets), amplification of received signals and experimental studies using vari...
Citation Formats
F. Vogel, S. Göktepe, P. Steinmann, and E. Kuhl, “Modeling and simulation of viscous electro-active polymers,” EUROPEAN JOURNAL OF MECHANICS A-SOLIDS, pp. 112–128, 2014, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/34876.