Show/Hide Menu
Hide/Show Apps
anonymousUser
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Açık Bilim Politikası
Açık Bilim Politikası
Frequently Asked Questions
Frequently Asked Questions
Browse
Browse
By Issue Date
By Issue Date
Authors
Authors
Titles
Titles
Subjects
Subjects
Communities & Collections
Communities & Collections
Analysis of reconstruction performance of magnetic resonance conductivity tensor imaging (MRCTI) using simulated measurements
Date
2017-01-01
Author
DEĞİRMENCİ, EVREN
Eyüboğlu, Behçet Murat
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
6
views
0
downloads
Magnetic resonance conductivity tensor imaging (MRCTI) was proposed recently to produce electrical conductivity images of anisotropic tissues. Similar to magnetic resonance electrical impedance tomography (MREIT), MRCTI uses magnetic field and boundary potential measurements obtained utilizing magnetic resonance imaging techniques. MRCTI reconstructs tensor images of anisotropic conductivity whereas MREIT reconstructs isotropic conductivity images. In this study, spatial resolution and linearity of five recently proposed MRCTI algorithms are evaluated using simulated measurements gathered from three different computer models. The results show that all five algorithms have quite similar reconstruction performances. Since the ABz S algorithm is easier to apply compared to the other four algorithms it can be said to be the best algorithm among the five algorithms.
Subject Keywords
Anisotropic conductivity
,
Electrical impedance
,
Imaging
,
Magnetic resonance
,
Reconstruction
URI
https://hdl.handle.net/11511/36169
Journal
TURKISH JOURNAL OF ELECTRICAL ENGINEERING AND COMPUTER SCIENCES
DOI
https://doi.org/10.3906/elk-1409-97
Collections
Department of Electrical and Electronics Engineering, Article