How many sensors for an acceptable breach detection probability?

2006-01-10
Onur, Ertan
Delic, H
Determining the required number of sensors to be deployed is a critical decision for surveillance wireless sensor networks. In this paper, we discuss the trade-off between the number of sensors and the breach detection probability considering the effects of sensor parameters. We present the weakest breach path problem formulation and provide a solution by utilizing the Dijkstra's shortest path algorithm. We propose a method to determine the required number of sensors to be deployed and to gain insight about the surveillance performance of the network, the maximum detection probability on the weakest breach path is considered as the performance measure.
COMPUTER COMMUNICATIONS

Suggestions

Surveillance with wireless sensor networks in obstruction: Breach paths as watershed contours
Onur, Ertan; Delic, Hakan; Akarun, Lale (Elsevier BV, 2010-02-01)
For surveillance applications of wireless sensor networks, analysis of sensing coverage and quality of sensing is crucial. For rough terrains where obstacles block the sensing capability, region-based approaches must be employed to determine the sensing quality. In this paper, we present a method to determine the breach paths and the deployment quality defined as the minimum of the maximum detection probabilities on the breach paths in the presence of obstacles. We propose the utilization of watershed segme...
Mobile multi-access IP: a proposal for mobile multi-access management in future wireless IP networks
Altuntas, S; Baykal, Buyurman (Elsevier BV, 2005-03-15)
As the wireless networking technologies advance rapidly, providing mobile users with roaming freely in heterogeneous wireless access domains, the need for multi-access arises. This paper introduces the Mobile Multi-Access Management Architecture (MMA-IP) for IP-based future wireless networks. MMA-IP enables mobile users to utilize multiple access domains synchronously and to switch between different access domains. In order to handle multi-access operations, MMA-IP defines a new special mobility agent, call...
UAVs assessment in software-defined IoT networks: An overview
Al-Turjman, Fadi; Abujubbeh, Mohammad; Malekloo, Arman; Mostarda, Leonardo (Elsevier BV, 2020-01-15)
The technological advancements in the ubiquitous IoT era and the ever-growing desire of communities to enforce smart cities with security and safety of user data as their priority, mini Unmanned Aerial Vehicles (UAVs), or drones, are perceived as a tool for raising living standards by meeting the requirements of societies. Traditionally in UAV communication links, meshed ad hoc networks were among the first options of connectivity. However, the increased demand for deploying multi-UAV networks necessitates ...
Delay aware reliable transport in wireless sensor networks
Gungor, Vehbi C.; Akan, Oezguer B. (Wiley, 2007-10-01)
Wireless sensor networks (WSN) are event-based systems that rely on the collective effort of several sensor nodes. Reliable event detection at the sink is based on collective information provided by the sensor nodes and not on any individual sensor data. Hence, conventional end-to-end reliability definitions and solutions are inapplicable in the WSN regime and would only lead to a waste of scarce sensor resources. Moreover, the reliability objective of WSN must be achieved within a certain real-time delay b...
A simple and effective mechanism for stored video streaming with TCP transport and server-side adaptive frame discard
Gurses, E; Akar, Gözde; Akar, N (Elsevier BV, 2005-07-15)
Transmission control protocol (TCP) with its well-established congestion control mechanism is the prevailing transport layer protocol for non-real time data in current Internet Protocol (IP) networks. It would be desirable to transmit any type of multimedia data using TCP in order to take advantage of the extensive operational experience behind TCP in the Internet. However, some features of TCP including retransmissions and variations in throughput and delay, although not catastrophic for non-real time data...
Citation Formats
E. Onur and H. Delic, “How many sensors for an acceptable breach detection probability?,” COMPUTER COMMUNICATIONS, pp. 173–182, 2006, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/34921.