Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
UAVs assessment in software-defined IoT networks: An overview
Date
2020-01-15
Author
Al-Turjman, Fadi
Abujubbeh, Mohammad
Malekloo, Arman
Mostarda, Leonardo
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
285
views
0
downloads
Cite This
The technological advancements in the ubiquitous IoT era and the ever-growing desire of communities to enforce smart cities with security and safety of user data as their priority, mini Unmanned Aerial Vehicles (UAVs), or drones, are perceived as a tool for raising living standards by meeting the requirements of societies. Traditionally in UAV communication links, meshed ad hoc networks were among the first options of connectivity. However, the increased demand for deploying multi-UAV networks necessitates the development of a more robust and more secure networking infrastructure. In this regard, Software-Defined Networking (SDN) paradigm has proved to be the better alternative for multi-UAV communication since it can offer flexible services for management and control owing to its unique features such as decoupling control from UAVs and network programmability. Therefore, in this paper, we provide an overview of drone applications in SDN-enabled Drone Base Stations (DBS), surveillance monitoring and emergency networks, and review the performance assessment techniques and the associated cybersecurity aspects in these applications. Moreover, future research directions, after a thorough analysis of the literature, is presented in this paper. Through the development of an innovative and multifaceted drone performance-assessment framework with the primal concerns, that are meeting user-defined requirements and the provision of secure and reliable services, it is, therefore, necessary to advance in IoT-enabled spaces. We believe the present work is a step in the right direction, and it is essential for fastening the movement toward UAV-enabled smart cities.
Subject Keywords
Computer Networks and Communications
URI
https://hdl.handle.net/11511/67607
Journal
COMPUTER COMMUNICATIONS
DOI
https://doi.org/10.1016/j.comcom.2019.12.004
Collections
Engineering, Article
Suggestions
OpenMETU
Core
Optimized Unmanned Aerial Vehicles Deployment for Static and Mobile Targets' Monitoring
Al-Turjman, Fadi; Zahmatkesh, Hadi; Al-Oqily, Ibrhaim; Daboul, Reda (Elsevier BV, 2020-01-01)
In the recent decade, drones or Unmanned Aerial Vehicles (UAVs) are getting increasing attention by both industry and academia. Due to the support of advanced technologies, they might be soon an integral part of any smart-cities related project. In this paper, we propose a cost-effective framework related to the optimal placement of drones in order to monitor a set of static and/or dynamic targets in the IoT era. The main objective of this study is to minimize the total number of drones required to monitor ...
Mobile multi-access IP: a proposal for mobile multi-access management in future wireless IP networks
Altuntas, S; Baykal, Buyurman (Elsevier BV, 2005-03-15)
As the wireless networking technologies advance rapidly, providing mobile users with roaming freely in heterogeneous wireless access domains, the need for multi-access arises. This paper introduces the Mobile Multi-Access Management Architecture (MMA-IP) for IP-based future wireless networks. MMA-IP enables mobile users to utilize multiple access domains synchronously and to switch between different access domains. In order to handle multi-access operations, MMA-IP defines a new special mobility agent, call...
How many sensors for an acceptable breach detection probability?
Onur, Ertan; Delic, H (Elsevier BV, 2006-01-10)
Determining the required number of sensors to be deployed is a critical decision for surveillance wireless sensor networks. In this paper, we discuss the trade-off between the number of sensors and the breach detection probability considering the effects of sensor parameters. We present the weakest breach path problem formulation and provide a solution by utilizing the Dijkstra's shortest path algorithm. We propose a method to determine the required number of sensors to be deployed and to gain insight about...
Surveillance with wireless sensor networks in obstruction: Breach paths as watershed contours
Onur, Ertan; Delic, Hakan; Akarun, Lale (Elsevier BV, 2010-02-01)
For surveillance applications of wireless sensor networks, analysis of sensing coverage and quality of sensing is crucial. For rough terrains where obstacles block the sensing capability, region-based approaches must be employed to determine the sensing quality. In this paper, we present a method to determine the breach paths and the deployment quality defined as the minimum of the maximum detection probabilities on the breach paths in the presence of obstacles. We propose the utilization of watershed segme...
A simulation study of ad hoc networking of UAVs with opportunistic resource utilization networks
Lilien, Leszek T.; BEN OTHMANE, Lotfi; Angın, Pelin; DECARLO, Andrew; Salih, Raed M.; BHARGAVA, Bharat (Elsevier BV, 2014-02-01)
Specialized ad hoc networks of unmanned aerial vehicles (UAVs) have been playing increasingly important roles in applications for homeland defense and security. Common resource virtualization techniques are mainly designed for stable networks; they fall short in providing optimal performance in more dynamic networks such as mobile ad hoc networks (MANETs)-due to their highly dynamic and unstable nature. We propose application of Opportunistic Resource Utilization Networks (Oppnets), a novel type of MANETs, ...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
F. Al-Turjman, M. Abujubbeh, A. Malekloo, and L. Mostarda, “UAVs assessment in software-defined IoT networks: An overview,”
COMPUTER COMMUNICATIONS
, pp. 519–536, 2020, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/67607.