Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Suppressive oligodeoxynucleotides protect mice from lethal endotoxic shock.
Download
index.pdf
Date
2005-04-15
Author
Shirota, H
Gursel, I
Gürsel, Mayda
Klinman, DM
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
214
views
85
downloads
Cite This
Endotoxic shock is a life-threatening condition caused by exposure to bacterial LPS. LPS triggers the release of acute phase, proinflammatory, and Th1 cytokines that facilitate the development of endotoxic shock. Synthetic oligodeoxynucleotides (ODN) expressing suppressive TTAGGG motifs effectively down-regulate the production of proinflammatory and Th1 cytokines elicited by a variety of immune stimuli. The current results demonstrate that suppressive ODN protect mice from LPS-induced endotoxic shock. Underlying this protective effect is the ability of suppressive ODN to bind to and prevent the phosphorylation of STAT1 and STAT4, thereby blocking the signaling cascade mediated by LPS-induced IFN- and IL-12. These findings suggest that suppressive ODN might be of use in the treatment of endotoxic shock.
Subject Keywords
Immunology
URI
https://hdl.handle.net/11511/34958
Journal
Journal of immunology (Baltimore, Md. : 1950)
DOI
https://doi.org/10.4049/jimmunol.174.8.4579
Collections
Department of Biology, Article
Suggestions
OpenMETU
Core
CpG oligodeoxynucleotides enhance neonatal resistance to Listeria infection.
Ito, S; Ishii, KJ; Gürsel, Mayda; Shirotra, H; Ihata, A; Klinman, DM (The American Association of Immunologists, 2005-01-15)
Infection by Listeria monocytogenes causes serious morbidity and mortality during the neonatal period. Previous studies established that immunostimulatory CpG oligodeoxynucleotides (ODN) can increased the resistance of adult mice to many infectious pathogens, including Listeria. This work examines the capacity of CpG ODN to stimulate a protective immune response in newborns. Results indicate that dendritic cells, macrophages, and B cells from 3-day-old mice respond to CpG stimulation by secreting IFN- , IL-...
Inhibition of the TIRAP-c-Jun interaction as a therapeutic strategy for AP1-mediated inflammatory responses
Srivastava, Mansi; Saqib, Uzma; Banerjee, Sreeparna; Wary, Kishore; Kizil, Burak; Muthu, Kannan; Baig, Mirza S. (Elsevier BV, 2019-06-01)
Bacterial endotoxin-induced sepsis causes 30-40% of the deaths in the intensive care unit (ICU) globally, for which there is no pharmacotherapy. Lipopolysaccharide (LPS), a bacterial endotoxin, stimulates the Toll-like receptor (TLR)-4 signalling pathways to upregulate the expression of various inflammatory mediators. Here, we show that the TIRAP and c-Jun protein signalling complex forms in macrophages in response to LPS stimulation, which increases the AP1 transcriptional activity, thereby amplifying the ...
Suppressive oligodeoxynucleotides inhibit Th1 differentiation by blocking IFN-gamma- and IL-12-mediated signaling.
Shirota, H; Gürsel, Mayda; Klinman, DM (The American Association of Immunologists, 2004-10-15)
Repetitive TTAGGG motifs present at high frequency in mammalian telomeres can suppress Th1-mediated immune responses. Synthetic oligonucleotides (ODN) containing TTAGGG motifs mimic this activity and have proven effective in the prevention/ treatment of certain Th1-dependent autoimmune diseases. This work explores the mechanism by which suppressive ODN block the induction of Th1 immunity. Findings indicate that these ODN inhibit IFN- -induced STAT1 phosphorylation and IL-12- induced STAT3 and STAT4 phosphor...
Repetitive elements in mammalian telomeres suppress bacterial DNA-induced immune activation.
Gursel, I; Gürsel, Mayda; Yamada, H; Ishii, KJ; Takeshita, F; Klinman, DM (The American Association of Immunologists, 2003-08-01)
Bacterial DNA contains immunostimulatory CpG motifs that trigger an innate immune response capable of promoting host survival following infectious challenge. Yet CpG-driven immune activation may also have deleterious consequences, ranging from autoimmune disease to death. We find that repetitive elements present at high frequency in mammalian telomeres, but rare in bacteria, down-regulate CpG-induced immune activation. Suppressive activity correlates with the ability of telomeric TTAGGG repeats to form G-te...
CpG RNA: identification of novel single-stranded RNA that stimulates human CD14+CD11c+ monocytes.
Sugiyama, T; Gürsel, Mayda; Takeshita, F; Coban, C; Conover, J; Kaisho, T; Akira, S; Klinman, DM; Ishii, KJ (The American Association of Immunologists, 2005-02-15)
Synthetic immunostimulatory nucleic acids such as CpG DNA are being harnessed therapeutically as vaccine adjuvants, anticancer or antiallergic agents. Efforts to identify nucleic acid-based agents capable of more specifically modulating the immune system are being developed. The current study identifies a novel class of single-stranded oligoribonucleotides (ORN) containing unmethylated CpG motifs and a poly(G) run at the 3 end (CpG ORN) that directly stimulate human CD14 CD11c monocytes but not dendritic ...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
H. Shirota, I. Gursel, M. Gürsel, and D. Klinman, “Suppressive oligodeoxynucleotides protect mice from lethal endotoxic shock.,”
Journal of immunology (Baltimore, Md. : 1950)
, pp. 4579–83, 2005, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/34958.