Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
CpG oligodeoxynucleotides enhance neonatal resistance to Listeria infection.
Download
index.pdf
Date
2005-01-15
Author
Ito, S
Ishii, KJ
Gürsel, Mayda
Shirotra, H
Ihata, A
Klinman, DM
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
205
views
0
downloads
Cite This
Infection by Listeria monocytogenes causes serious morbidity and mortality during the neonatal period. Previous studies established that immunostimulatory CpG oligodeoxynucleotides (ODN) can increased the resistance of adult mice to many infectious pathogens, including Listeria. This work examines the capacity of CpG ODN to stimulate a protective immune response in newborns. Results indicate that dendritic cells, macrophages, and B cells from 3-day-old mice respond to CpG stimulation by secreting IFN- , IL-12, and/or TNF-. Spleen cells from CpG-treated neonates produce large amounts of cytokine and NO when exposed to bacteria in vitro. Newborns treated with CpG ODN are protected from lethal Listeria challenge and generate Agspecific CD4 and CD8 T cells that afford long-term protection against subsequent infection. These results demonstrate that cellular elements of the neonatal immune system respond to stimulation by CpG ODN, thereby reducing host susceptibility to infectious pathogens.
Subject Keywords
Immunology
URI
https://hdl.handle.net/11511/38043
Journal
Journal of immunology (Baltimore, Md. : 1950)
DOI
https://doi.org/10.4049/jimmunol.174.2.777
Collections
Department of Biology, Article
Suggestions
OpenMETU
Core
CpG oligodeoxynucleotides protect normal and SIV-infected macaques from Leishmania infection.
Verthelyi, D; Gürsel, Mayda; Kenney, RT; Lifson, JD; Liu, S; Mican, J; Klinman, DM (The American Association of Immunologists, 2003-05-01)
Oligodeoxynucleotides containing CpG motifs (CpG ODNs) mimic microbial DNA and activate effectors of the innate immune response, which limits the spread of pathogens and promotes an adaptive immune response. CpG ODNs have been shown to protect mice from infection with intracellular pathogens. Unfortunately, CpG motifs that optimally stimulate humans are only weakly active in mice, mandating the use of nonhuman primates to monitor the activity and safety of "human" CpG ODNs in vivo. This study demonstrates t...
Suppressive oligodeoxynucleotides protect mice from lethal endotoxic shock.
Shirota, H; Gursel, I; Gürsel, Mayda; Klinman, DM (The American Association of Immunologists, 2005-04-15)
Endotoxic shock is a life-threatening condition caused by exposure to bacterial LPS. LPS triggers the release of acute phase, proinflammatory, and Th1 cytokines that facilitate the development of endotoxic shock. Synthetic oligodeoxynucleotides (ODN) expressing suppressive TTAGGG motifs effectively down-regulate the production of proinflammatory and Th1 cytokines elicited by a variety of immune stimuli. The current results demonstrate that suppressive ODN protect mice from LPS-induced endotoxic shock. Under...
Inhibition of the TIRAP-c-Jun interaction as a therapeutic strategy for AP1-mediated inflammatory responses
Srivastava, Mansi; Saqib, Uzma; Banerjee, Sreeparna; Wary, Kishore; Kizil, Burak; Muthu, Kannan; Baig, Mirza S. (Elsevier BV, 2019-06-01)
Bacterial endotoxin-induced sepsis causes 30-40% of the deaths in the intensive care unit (ICU) globally, for which there is no pharmacotherapy. Lipopolysaccharide (LPS), a bacterial endotoxin, stimulates the Toll-like receptor (TLR)-4 signalling pathways to upregulate the expression of various inflammatory mediators. Here, we show that the TIRAP and c-Jun protein signalling complex forms in macrophages in response to LPS stimulation, which increases the AP1 transcriptional activity, thereby amplifying the ...
CpG RNA: identification of novel single-stranded RNA that stimulates human CD14+CD11c+ monocytes.
Sugiyama, T; Gürsel, Mayda; Takeshita, F; Coban, C; Conover, J; Kaisho, T; Akira, S; Klinman, DM; Ishii, KJ (The American Association of Immunologists, 2005-02-15)
Synthetic immunostimulatory nucleic acids such as CpG DNA are being harnessed therapeutically as vaccine adjuvants, anticancer or antiallergic agents. Efforts to identify nucleic acid-based agents capable of more specifically modulating the immune system are being developed. The current study identifies a novel class of single-stranded oligoribonucleotides (ORN) containing unmethylated CpG motifs and a poly(G) run at the 3 end (CpG ORN) that directly stimulate human CD14 CD11c monocytes but not dendritic ...
Repetitive elements in mammalian telomeres suppress bacterial DNA-induced immune activation.
Gursel, I; Gürsel, Mayda; Yamada, H; Ishii, KJ; Takeshita, F; Klinman, DM (The American Association of Immunologists, 2003-08-01)
Bacterial DNA contains immunostimulatory CpG motifs that trigger an innate immune response capable of promoting host survival following infectious challenge. Yet CpG-driven immune activation may also have deleterious consequences, ranging from autoimmune disease to death. We find that repetitive elements present at high frequency in mammalian telomeres, but rare in bacteria, down-regulate CpG-induced immune activation. Suppressive activity correlates with the ability of telomeric TTAGGG repeats to form G-te...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
S. Ito, K. Ishii, M. Gürsel, H. Shirotra, A. Ihata, and D. Klinman, “CpG oligodeoxynucleotides enhance neonatal resistance to Listeria infection.,”
Journal of immunology (Baltimore, Md. : 1950)
, pp. 777–82, 2005, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/38043.