Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
A Novel Alternating Cell Directions Implicit Method for the Solution of Incompressible Navier Stokes Equations on Unstructured Grids
Download
10.18869-acadpub.jafm.73.243.27654.pdf
Date
2017-01-01
Author
Bas, O.
ÇETE, ALİ RUHŞEN
Mengi, S.
Tuncer, İsmail Hakkı
Kaynak, U.
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
268
views
150
downloads
Cite This
In this paper, A Novel Alternating Cell Direction Implicit Method (ACDI) is researched which allows implementation of fast line implicit methods on quadrilateral unstructured meshes. In ACDI method, designated alternating cell directions are taken along a series of contiguous cells within the unstructured grid domain and used as implicit lines similar to Line Gauss Seidel Method (LGS). ACDI method applied earlier for the solution of potential flows is extended for the solution of the incompressible Navier-Stokes equations on unstructured grids. The system of equations is solved by using the Symmetric Line Gauss-Seidel (SGS) method along the alternating cell directions. Laminar flow fields over a single element NACA-0008 airfoil are computed by using structured and unstructured quadrilateral grids, and inviscid Euler flow solutions are given for the NACA-23012b multielement airfoil. The predictive capability of the method is validated against the data taken from the experimental or the other numerical studies and the efficiency of the ACDI method is compared with the implicit Point Gauss Seidel (PGS) method. In the selected validation cases, the results show that a reduction in total computation between 18% and 23% is achieved by the ACDI method over the PGS. In general, the results show that the ACDI method is a fast, efficient, robust and versatile method that can handle complicated unstructured grid cases with equal ease as with the structured grids.
Subject Keywords
Alternating cell directions implicit method
,
ACDI
,
U-MUSCL
,
Artificial compressibility
,
Incompressible N-S solver
URI
https://hdl.handle.net/11511/35070
Journal
JOURNAL OF APPLIED FLUID MECHANICS
DOI
https://doi.org/10.18869/acadpub.jafm.73.243.27654
Collections
Department of Aerospace Engineering, Article
Suggestions
OpenMETU
Core
A frequency domain nonparametric identification method for nonlinear structures: Describing surface method
Karaagacli, Taylan; Özgüven, Hasan Nevzat (Elsevier BV, 2020-10-01)
In this paper a new method called 'Describing Surface Method' (DSM) is developed for nonparametric identification of a localized nonlinearity in structural dynamics. The method makes use of the Nonlinearity Matrix concept developed in the past by using classical describing function theory, which assumes that nonlinearity depends mainly on the response amplitude and frequency dependence is negligible for almost all of the standard nonlinear elements. However, this may not always be the case for complex nonli...
A new modal superposition method for nonlinear vibration analysis of structures using hybrid mode shapes
Ferhatoglu, Erhan; Ciğeroğlu, Ender; Özgüven, Hasan Nevzat (Elsevier BV, 2018-07-01)
In this paper, a new modal superposition method based on a hybrid mode shape concept is developed for the determination of steady state vibration response of nonlinear structures. The method is developed specifically for systems having nonlinearities where the stiffness of the system may take different limiting values. Stiffness variation of these nonlinear systems enables one to define different linear systems corresponding to each value of the limiting equivalent stiffness. Moreover, the response of the n...
An octree-based solution-adaptive Cartesian grid generator and Euler solver for the simulation of three-dimensional inviscid compressible flows
Kara, Emre; KUTLAR, AHMET İHSAN; Aksel, Mehmet Haluk (2016-01-01)
Cartesian grid generation methods are especially designed algorithms to generate automatic grids for complex geometries and to simulate flows around such geometries regardless of the body shape. Cartesian grids are generated by constructing an octree-based data structure for the purpose of connecting the Cartesian cells to each other. Entire algorithm is implemented in object-oriented FORTRAN programming language. Some special Cartesian algorithms, namely, Ray-Casting method and cut-cell adaptation are used...
A unified approach for the formulation of interaction problems by the boundary element method
Mengi, Y; Argeso, H (Wiley, 2006-04-30)
A unified formulation is presented, based on boundary element method, in a form suitable for performing the interaction analyses by substructure method for solid-solid and soil-structure problems. The proposed formulation permits the evaluation of all the elements of impedance and input motion matrices simultaneously at a single step in terms of system matrices of the boundary element method without solving any special problem, such as, unit displacement or load problem, as required in conventional methods....
A Novel Computational Method to Calculate Nonlinear Normal Modes of Complex Structures
Samandarı, Hamed; Ciğeroğlu, Ender (2019-01-31)
In this study, a simple and efficient computational approach to obtain nonlinear normal modes (NNMs) of nonlinear structures is presented. Describing function method (DFM) is used to capture the nonlinear internal forces under periodic motion. DFM has the advantage of expressing the nonlinear internal force as a nonlinear stiffness matrix multiplied by a displacement vector, where the off-diagonal terms of the nonlinear stiffness matrix can provide a comprehensive knowledge about the coupling between the mo...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
O. Bas, A. R. ÇETE, S. Mengi, İ. H. Tuncer, and U. Kaynak, “A Novel Alternating Cell Directions Implicit Method for the Solution of Incompressible Navier Stokes Equations on Unstructured Grids,”
JOURNAL OF APPLIED FLUID MECHANICS
, pp. 1561–1570, 2017, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/35070.