Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
An octree-based solution-adaptive Cartesian grid generator and Euler solver for the simulation of three-dimensional inviscid compressible flows
Date
2016-01-01
Author
Kara, Emre
KUTLAR, AHMET İHSAN
Aksel, Mehmet Haluk
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
243
views
0
downloads
Cite This
Cartesian grid generation methods are especially designed algorithms to generate automatic grids for complex geometries and to simulate flows around such geometries regardless of the body shape. Cartesian grids are generated by constructing an octree-based data structure for the purpose of connecting the Cartesian cells to each other. Entire algorithm is implemented in object-oriented FORTRAN programming language. Some special Cartesian algorithms, namely, Ray-Casting method and cut-cell adaptation are used around three-dimensional closed bodies. The flow field around the solid body is obtained by employing Euler equations which are discretised by using finite volume method. Validation of the numerical results is accomplished by comparison with the experimentally obtained data from the flow around ONERA M6 wing. Employing the solution adaptation techniques, pressure coefficients and contours of the flow around the wing have verified and captured two shock waves (weak leading edge shock and midchord shock) by the developed grid-generator-with-eULER-solver-for-3D-applications (GeULER3D) code.
Subject Keywords
Cartesian grid generation
,
Octree data structure
,
Ray casting method
,
Cut cell adaptation
,
Object oriented fortran programming
,
Euler solver
,
Computational fluid dynamics
URI
https://hdl.handle.net/11511/56460
Journal
PROGRESS IN COMPUTATIONAL FLUID DYNAMICS
DOI
https://doi.org/10.1504/pcfd.2016.076247
Collections
Department of Mechanical Engineering, Article
Suggestions
OpenMETU
Core
A Navier-Stokes Solver for Compressible Turbulent Flows on Quadtree and Octree Based Cartesian Grids
Kara, E.; Kutlar, A. İ.; Aksel, M. H.; null, null (Academic World Research, 2019-3-1)
Cartesian grids represent a special extent in unstructured grid literature. They employ chiefly created algorithms to produce automatic meshing while simulating flows around complex geometries without considering shape of the bodies. In this article, firstly, it is intended to produce regionally developed Cartesian meshes for two dimensional and three dimensional, disordered geometries to provide solutions hierarchically. Secondly, accurate results for turbulent flows are developed by finite volume solv...
A two dimensional euler flow solver on adaptive cartesian grids
Siyahhan, Bercan; Aksel, Mehmet Haluk; Department of Mechanical Engineering (2008)
In the thesis work, a code to solve the two dimensional compressible Euler equations for external flows around arbitrary geometries have been developed. A Cartesianmesh generator is incorporated to the solver. Hence the pre-processing can be performed together with the solution within a single code. The code is written in the C++ programming language and its object oriented capabilities have been exploited to save memory in the data structure developed. The Cartesian mesh is formed by dividing squares succe...
A 2-0 navier-stokes solution method with overset moving grids
Tuncer, İsmail Hakkı (1996-01-01)
A simple, robust numerical algorithm to localize moving boundary points and to interpolate uniteady solution variables across 2-D, arbitrarily overset computational grids is presented. Overset grids are allowed to move in time relative to each other. The intergrid boundary points are localized in terms of three grid points on the donor grid by a directional search algorithm. The parameters of the search algorithm give the interpolation weights at the localized boundary point. The method is independent of nu...
A Novel Alternating Cell Directions Implicit Method for the Solution of Incompressible Navier Stokes Equations on Unstructured Grids
Bas, O.; ÇETE, ALİ RUHŞEN; Mengi, S.; Tuncer, İsmail Hakkı; Kaynak, U. (2017-01-01)
In this paper, A Novel Alternating Cell Direction Implicit Method (ACDI) is researched which allows implementation of fast line implicit methods on quadrilateral unstructured meshes. In ACDI method, designated alternating cell directions are taken along a series of contiguous cells within the unstructured grid domain and used as implicit lines similar to Line Gauss Seidel Method (LGS). ACDI method applied earlier for the solution of potential flows is extended for the solution of the incompressible Navier-S...
A 2-D unsteady Navier-Stokes solution method with overlapping/overset moving grids
Tuncer, İsmail Hakkı (1996-01-01)
A simple, robust numerical algorithm to localize intergrid boundary points and to interpolate unsteady solution variables across 2-D, overset/overlapping, structured computational grids is presented. Overset/ overlapping grids are allowed to move in time relative to each other. The intergrid boundary points are localized in terms of three grid points on the donor grid by a directional search algorithm. The final parameters of the search algorithm give the interpolation weights at the interpolation point. Th...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
E. Kara, A. İ. KUTLAR, and M. H. Aksel, “An octree-based solution-adaptive Cartesian grid generator and Euler solver for the simulation of three-dimensional inviscid compressible flows,”
PROGRESS IN COMPUTATIONAL FLUID DYNAMICS
, pp. 131–145, 2016, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/56460.