Optimal design of synchronous reluctance machines

Kiani, Morgan
Bostancı, Emine
Fahimi, Babak
Electric machines are optimized to the extent of their magnetic configuration and manufacturability. Thanks to recent advances in development of composite material (SMC), 3-D printing, and programmable magnets, manufacturing capabilities have changed dramatically. Introducing of cloud computing and impressive computational resources has opened new opportunities in virtual prototyping in a multi-physics environment. These enabling technologies present a potential for a transformative approach in optimal design, evaluation, and manufacturing of the next generation of electric machines and adjustable speed drives. This paper proposes a new design approach applied to optimal design of synchronous reluctance machines. The proposed technique removes all the conventional constraints posed by traditional designs of classic magnetic configurations and only keeps a minimum airgap length and shaft diameter as the boundary conditions. The fabric of the rotor is based on a mesh whose elements can be air or SMC. A genetic algorithm is used for optimal placement of rotor configuration.
Citation Formats
M. Kiani, E. Bostancı, and B. Fahimi, “Optimal design of synchronous reluctance machines,” 2017, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/35132.