Beam modulation in double gap virtual cathode oscillator

Küçük, İbrahim Semih
Vircator is a promising high power microwave device when its simplicity, frequency tunability, lack of external magnetic field source are considered. Vircator gains importance especially susceptibility testing to electromagnetic pulses of electronic equipments with its tunability. Apart from advantages, main bottleneck of the vircator is its low efficiency. Tunability and efficiency enhancement studies are still continued in literature. Double gap vircator draws attention due to its tunability, generation frequency stability and microwave radiation efficiency result from beam modulation. This thesis examines double gap vircator in terms of tunability under external signal injection, effect of both plungers and coupling window on output electromagnetic power. With signal injection, efficiency increase, due to earlier start time, is obtained and frequency locking behavior of vircator is observed. For the various configurations of plungers, theoretical cavity field distributions are analyzed and it is obtained that efficiency is maximized when field distribution on beam center is at maximum. Tuning procedure for double gap vircator is developed and its applicability for different AK gap distances and gap voltages are shown.


Electromagnetic analysis and design of miniaturized branchline couplers /
Arıcan, Galip Orkun; Sayan, Gönül; Şen, Özlem; Department of Electrical and Electronics Engineering (2014)
Branchline couplers are widely used components in the design of microwave devices. In addition to other applications, these couplers have been crucial elements for high power GaN based MMIC designs where layout space limitations are known to be critical. The conventional branchline couplers designed by four quarter wavelenght transmission lines. This type of conventional branchline coupler covers a large physical area that leads to high costs in MMIC fabrication. Therefore, design of miniaturized branchline...
Field oriented control of permanent magnet synchrounous motors using three-level neutral-point-clamped inverter
Meşe, Hüseyin; Ersak, Aydın; Department of Electrical and Electronics Engineering (2012)
In this thesis, field oriented control of permanent magnet synchronous motors using three-level neutral-point-clamped inverter is studied. Permanent magnet synchronous motors are used in high performance drive applications. In this study, the permanent magnet synchronous motor is fed by three-level neutral-point-clamped inverter. For three-level neutral-point-clamped inverter different space vector modulation algorithms, which are reported in literature, are analyzed and compared via computer simulations. T...
Energy scavenging from low-frequency vibrations by using frequency up-conversion for wireless sensor applications
Külah, Haluk (2008-03-01)
This paper presents an electromagnetic (EM) vibration-to-electrical power generator for wireless sensors, which can scavenge energy from low-frequency external vibrations. For most wireless applications, the ambient vibration is generally at very low frequencies (1-100 Hz), and traditional scavenging techniques cannot generate enough energy for proper operation. The reported generator up-converts low-frequency environmental vibrations to a higher frequency through a mechanical frequency up-converter using a...
Energy Harvesting from Piezoelectric Stacks Using Impacting Beam
Ozpak, Yigit; Aykan, Murat; Çalışkan, Mehmet (2015-02-05)
Piezoelectric materials can be used for energy harvesting from ambient vibration due to their high power density and ease of application. Two basic methods, namely, tuning the natural frequency to the operational frequency and increasing the operation bandwidth of the harvester are commonly employed to maximize the energy harvested from piezoelectric materials. Majority of the studies performed in recent years focus mostly on tuning the natural frequency of the harvester. However, small deviations in operat...
Optimal design of synchronous reluctance machines
Kiani, Morgan; Bostancı, Emine; Fahimi, Babak (2017-12-15)
Electric machines are optimized to the extent of their magnetic configuration and manufacturability. Thanks to recent advances in development of composite material (SMC), 3-D printing, and programmable magnets, manufacturing capabilities have changed dramatically. Introducing of cloud computing and impressive computational resources has opened new opportunities in virtual prototyping in a multi-physics environment. These enabling technologies present a potential for a transformative approach in optimal desi...
Citation Formats
İ. S. Küçük, “Beam modulation in double gap virtual cathode oscillator,” M.S. - Master of Science, Middle East Technical University, 2018.