Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Proposal of a Novel Gravity-Fed, Particle-Filled Solar Receiver
Download
index.pdf
Date
2016-10-14
Author
JOHNSON, Evan
Baker, Derek Keıth
Tarı, İlker
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
266
views
105
downloads
Cite This
Solar Thermal Electricity power plants utilizing solid particles as heat transfer and storage media have been proposed by several research groups, with studies citing benefits of increased thermal efficiency and lower cost. Several types of solid particle receivers have been proposed, with leading designs consisting of particles falling or suspended in air. A new solid particle receiver is proposed here, consisting of a receiver fully packed with particles flowing downward with gravity. Particle flow rate is regulated with an outlet valve. This Particle-Filled receiver concept is compared to other receiver designs, and initial cold and hot experiments are conducted. Mass flux values of up to 379 kg m-2 s -1 are demonstrated, and heat transfer coefficients between 136 and 251 W m-2 K-1 are found.
Subject Keywords
Heat-transfer fluid
,
Solid particles
,
Technology
,
Generation
,
Suspension
,
Flow
URI
https://hdl.handle.net/11511/35171
DOI
https://doi.org/10.1063/1.4984371
Conference Name
22nd International Conference on Concentrating Solar Power and Chemical Energy Systems (SOLARPACES)
Collections
Department of Mechanical Engineering, Conference / Seminar
Suggestions
OpenMETU
Core
Evaluation of hybridsolar-wind-hydrogenenergy system based on methanol electrolyzer
Budak, Yagmur; DEVRİM, YILSER (Wiley, 2020-10-01)
In this study, it is aimed to meet the annual electricity and heating needs of a house without interruption with the photovoltaic panel, wind turbine, methanol electrolyzer, and high temperature proton exchange membrane fuel cell system. The system results show that the use of the 2 WT with 18 PV was enough to provide the need of the methanol electrolyzer, which provides requirements of the high temperature proton exchange membrane fuel cell. The produced heat by the fuel cell was used to meet the heat requ...
Numerical investigation of circulating fluidized bed riser hydrodynamics for concentrating solar thermal receiver applications
Bilyaz, Serhat; Tarı, İlker; Department of Mechanical Engineering (2015)
Various heat transfer fluids and thermal storage materials are considered for concentrating solar power systems to improve the storage capability of the system which compensates the fluctuating behavior of the solar resources. Solid particles can be a good alternative since they have high sensible heat capacity. In addition, they are cheap, environmentally benign and chemically and mechanically stable at high temperatures. In this thesis, hydrodynamics of circulating fluidized bed solar receiver was numeric...
Investigation of various options for numerical modeling of fluidized bedsI for a solar thermal application
Bilyaz, Serhat; Tarı, İlker (null; 2015-05-29)
Circulating fluidized bed solid particle absorption solar thermal energy system is a promising approach to solar thermal with thermal energy storage. For accurately modeling such systems, the fluidized bed numerical model should be correctly representing the behavior of the actual bed. There are several suggested partial semi-empirical models in the literature considering distinct phenomena related to fluidization and void fraction distribution in a fluidized be...
HYDRODYNAMIC AND THERMAL MODELING OF CIRCULATING FLUIDIZED BED SOLAR RECEIVERS
Bilyaz, Serhat; Tarı, İlker (2016-11-17)
The riser tube solar receiver of a circulating fluidized bed solid particle absorption solar thermal energy system was numerically modeled for analyzing hydrodynamic and heat transfer behaviors of the solid particles in the riser. Hydrodynamics of the model is validated by comparing radial distribution of void fractions with an experimental study. For the heat transfer from the opaque walls of the receiver that is heated to high temperatures by the solar rays concentrated by the heliostat field, a simple fr...
Optimizing the orientation of solar photovoltaic systems considering the effects of irradiation and cell temperature models with dust accumulation
Al-Ghussain, Loiy; Taylan, Onur; Abujubbeh, Mohammad; Hassan, Muhammed A. (2023-01-01)
To cope with the growing installation capacities of solar photovoltaic (PV) systems in desert areas, it is necessary to revisit the energy production models and the optimal angles of PV panels given the significant impacts of ambient temperature, wind speed, dust accumulation, and cleaning frequency. In this study, these four factors are examined for four PV technologies (polycrystalline, microcrystalline, monocrystalline, and thin-film) at three cities in Jordan, Egypt, and Tunisia using precise ground-lev...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
E. JOHNSON, D. K. Baker, and İ. Tarı, “Proposal of a Novel Gravity-Fed, Particle-Filled Solar Receiver,” Masdar Inst Sci & Technol, Abu Dhabi, 2016, vol. 1850, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/35171.