Edge cracks in a transversely isotropic hollow cylinder

The analytical solution for the linear elastic, axisymmetric problem of inner and outer edge cracks in a transversely isotropic infinitely long hollow cylinder is considered. The z = 0 plane on which the crack lies is a plane of symmetry. The loading is uniform crack surface pressure. The mixed boundary value problem is reduced to a singular integral equation where the unknown is the derivative of the crack surface displacement. An asymptotic analysis is done to derive the generalized Cauchy kernel associated with edge cracks. It is shown that the stress intensity factor is a function of three material parameters. The singular integral equation is solved numerically. Stress intensity factors are presented for various values of material and geometric parameters.
Engineering Fracture Mechanics


Plane strain analytical solutions for a functionally graded elastic-plastic pressurized tube
Eraslan, Ahmet Nedim (Elsevier BV, 2006-09-01)
Plane strain analytical solutions to functionally graded elastic and elastic-plastic pressurized tube problems are obtained in the framework of small deformation theory. The modulus of elasticity and the uniaxial yield limit of the tube material are assumed to vary radially according to two parametric parabolic forms. The analytical plastic model is based on Tresca's yield criterion, its associated flow rule and ideally plastic material behaviour. Elastic, partially plastic and fully plastic stress states a...
Circumferentially cracked bimaterial hollow cylinder under mechanical and transient thermal loading
Kadıoğlu, Fevzi Suat (Informa UK Limited, 2006-12-01)
The analytical solution for the problem of a circumferential inner surface crack in an elastic, infinitely long composite hollow cylinder, made of two concentric perfectly bonded transversely isotropic cylinders is considered. Uniform axial loading and thermal loading in the form of a sudden cooling on the inner boundary are considered. Out of 10 material parameters involved, two bimaterial parameters and three material parameters for each layer upon which the stress intensity factor depends under uniform l...
Plastic deformation induced microstructure evolution through gradient enhanced crystal plasticity based on a non-convex Helmholtz energy
Klusemann, Benjamin; Yalçınkaya, Tuncay (Elsevier BV, 2013-09-01)
A gradient crystal plasticity model in the framework of continuum thermodynamics and rate variational formulation is presented for the description of plastic deformation patterning in a system with non-convex energetic hardening. The paper focuses on the extension of the 1D deformation patterning analysis of Yalcinkaya et al. (2011) to 2D for monotonic loading histories. Solution algorithm is based on the simultaneous solution of displacement and plastic slip fields, which have been considered as primary va...
Contact mechanics problem between an orthotropic graded coating and a rigid punch of an arbitrary profile
ARSLAN, ONUR; Dağ, Serkan (Elsevier BV, 2018-01-01)
Singular integral equation (SIE) and finite element methods are developed for sliding contact analysis of a finite thickness orthotropic graded coating, which is perfectly bonded to an isotropic substrate. Orthotropic stiffness coefficients of the coating vary exponentially through the coating thickness. The coating is assumed to be loaded by a frictional rigid punch of an arbitrary profile. In the SIE formulation, governing partial differential equations are derived in accordance with the theory of plane e...
Axisymmetric crack problem for a hollow cylinder imbedded in a dissimilar medium
Kadıoğlu, Fevzi Suat (Elsevier BV, 2005-05-01)
The analytical solution for the linear elastic problem of flat annular crack in a transversely isotropic hollow cylinder imbedded in a transversely isotropic medium is considered. The hollow cylinder is assumed to be perfectly bonded to the surrounding medium. This structure, which can represent a cylindrical coating-substrate system, is subjected to uniform crack surface pressure. Because of the geometry and the loading, the problem is axisymmetric. The z = 0 plane on which the crack lies, is also a plane ...
Citation Formats
F. S. Kadıoğlu, “Edge cracks in a transversely isotropic hollow cylinder,” Engineering Fracture Mechanics, pp. 2159–2173, 2005, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/35251.