Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Effect of isolator and ground motion characteristics on the performance of seismic-isolated bridges
Date
2006-02-01
Author
Dicleli, Murat
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
204
views
0
downloads
Cite This
This paper presents the effect of isolator and substructure properties as well as the frequency characteristics and intensity of the ground motion on the performance of seismic-isolated bridges (SIBs) and examines some critical design clauses in the AASHTO Guide Specification for Seismic Isolation Design. For this purpose, a parametric study, involving more than 800 non-linear time history analyses of simplified structural models representative of typical SIBs, is conducted. The results from the parametric study are then used to derive important design recommendations and conclusions that may be used by bridge engineers to arrive to a more sound and economical design of SIBs. It is found that the SIB response is a function of the peak ground acceleration to peak ground velocity ratio of the Ground motion. Thus, the choice of the seismic ground motion according to the characteristics of the bridge site is crucial for a correct design of the SIB. It is also found that the characteristic strength of the isolator may be chosen based on the intensity and frequency characteristics of the ground motion. Furthermore, the isolator post-elastic stiffness is found to have a notable effect on the response of SIBs. Copyright (c) 2005 John Wiley & Sons, Ltd.
Subject Keywords
Geotechnical Engineering and Engineering Geology
,
Earth and Planetary Sciences (miscellaneous)
URI
https://hdl.handle.net/11511/35338
Journal
EARTHQUAKE ENGINEERING & STRUCTURAL DYNAMICS
DOI
https://doi.org/10.1002/eqe.522
Collections
Department of Engineering Sciences, Article
Suggestions
OpenMETU
Core
Effect of near-fault ground motion and damper characteristics on the seismic performance of chevron braced steel frames
Dicleli, Murat (Wiley, 2007-06-01)
This study is aimed at comparing the seismic performance of steel chevron braced frames (CBFs) with and without fluid viscous dampers (FVDs) as a function of the characteristics of the near-fault (NF) ground motion and FVD parameters. For this purpose, comparative nonlinear time history (NLTH) analyses of single and multiple storey CBFs with and without FVDs are conducted using NF ground motions with various velocity pulse periods scaled to have small, moderate and large intensities. Additionally, NLTH anal...
An improvement to linear-elastic procedures for seismic performance assessment
Gunay, Mehmet Selim; Sucuoğlu, Haluk (Wiley, 2010-07-10)
An improved linear-elastic analysis procedure is developed in this paper as a simple approximate method for displacement-based seismic assessment of the existing buildings. The procedure is mainly based on reducing the stiffness of structural members that are expected to respond in the inelastic range in a single global iteration step. Modal spectral displacement demands are determined from the equal displacement rule. Response predictions obtained from the proposed procedure are evaluated comparatively by ...
Comparison of 2D versus 3D modeling approaches for the analysis of the concrete faced rock-fill Cokal Dam
Arıcı, Yalın (Wiley, 2013-12-01)
This paper's primary purpose is to compare the 2D and 3D analysis methodologies in investigating the performance of a concrete faced rock-fill dams under dynamic loading conditions. The state of stress on the face plate was obtained in both cases using a total strain based crack model to predict the spreading of cracks on the plate and the corresponding crack widths. Results of the 2D and 3D analyses agree well. Although significantly more demanding, 3D analyses have the advantage of predicting the followin...
PREDICTION OF SEISMIC ENERGY-DISSIPATION IN SDOF SYSTEMS
NURTUG, A; Sucuoğlu, Haluk (Wiley, 1995-09-01)
A simple analytical procedure is developed for calculating the seismic energy dissipated by a linear SDOF system under an earthquake ground excitation. The ground excitation is specified by its pseudo-velocity spectra and effective duration whereas the SDOF system is defined by its natural period of vibration and viscous damping ratio. However, the derived relationship for the energy dissipation demand under an earthquake excitation is sensitive neither to the viscous damping ratio nor the ductility ratio w...
Evaluation of displacement coefficient method for seismically retrofitted buildings with various ductility capacities
Dicleli, Murat (Wiley, 2014-07-25)
This research study is aimed at evaluating the accuracy of the displacement coefficient method (DCM) of FEMA 440 and associated nonlinear static procedure (NLSP) for actual buildings with soft story mechanism and various ductility capacities. The DCM and associated NLSP are evaluated using two existing seismically vulnerable buildings with soft story mechanism. The buildings are first retrofitted using a ductile steel-brace-link system to represent those with good ductility capacity and then retrofitted wit...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
M. Dicleli, “Effect of isolator and ground motion characteristics on the performance of seismic-isolated bridges,”
EARTHQUAKE ENGINEERING & STRUCTURAL DYNAMICS
, pp. 233–250, 2006, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/35338.