Effect of near-fault ground motion and damper characteristics on the seismic performance of chevron braced steel frames

This study is aimed at comparing the seismic performance of steel chevron braced frames (CBFs) with and without fluid viscous dampers (FVDs) as a function of the characteristics of the near-fault (NF) ground motion and FVD parameters. For this purpose, comparative nonlinear time history (NLTH) analyses of single and multiple storey CBFs with and without FVDs are conducted using NF ground motions with various velocity pulse periods scaled to have small, moderate and large intensities. Additionally, NLTH analyses of single- and four-storey CBFs with FVDs are conducted to study the effect of the damping ratio and velocity exponent of the FVD on the seismic performance of the frames. The analyses results revealed that the seismic performance of the CBFs without FVDs is very poor and sensitive to the velocity pulse period and the intensity of the NF ground motion due to brace-buckling effects. Installing FVDs into the CBFs significantly improved their seismic performance by maintaining their elastic behaviour. Furthermore, FVDs with smaller velocity exponents and larger damping ratio are observed to be more effective in improving the seismic performance of the CBFs subjected to NF earthquakes. However, FVDs with damping ratios larger than 50% do not produce significant additional improvement in the seismic performance of the CBFs. Copyright (C) 2006 John Wiley & Sons, Ltd.


Evaluation of displacement coefficient method for seismically retrofitted buildings with various ductility capacities
Dicleli, Murat (Wiley, 2014-07-25)
This research study is aimed at evaluating the accuracy of the displacement coefficient method (DCM) of FEMA 440 and associated nonlinear static procedure (NLSP) for actual buildings with soft story mechanism and various ductility capacities. The DCM and associated NLSP are evaluated using two existing seismically vulnerable buildings with soft story mechanism. The buildings are first retrofitted using a ductile steel-brace-link system to represent those with good ductility capacity and then retrofitted wit...
Effect of isolator and ground motion characteristics on the performance of seismic-isolated bridges
Dicleli, Murat (Wiley, 2006-02-01)
This paper presents the effect of isolator and substructure properties as well as the frequency characteristics and intensity of the ground motion on the performance of seismic-isolated bridges (SIBs) and examines some critical design clauses in the AASHTO Guide Specification for Seismic Isolation Design. For this purpose, a parametric study, involving more than 800 non-linear time history analyses of simplified structural models representative of typical SIBs, is conducted. The results from the parametric ...
Effect of peak ground velocity on deformation demands for SDOF systems
Akkar, S; Ozen, O (Wiley, 2005-11-10)
The effect of peak ground velocity (PGV) on single-degree-of-freedom (SDOF) deformation demands and for certain ground-motion features is described by using a total of 60 soil site records with source-to-site distances less than 23 km and moment magnitudes between 5.5 and 7.6. The observations based on these records indicate that PGV correlates well with the earthquake magnitude and provides useful information about the ground-motion frequency content and strong-motion duration that can play a role on the s...
Seismic energy dissipation in deteriorating systems through low-cycle fatigue
Erberik, Murat Altuğ; Sucuoğlu, Haluk (Wiley, 2004-01-01)
Energy dissipation characteristics of structural members which exhibit both strength and stiffness deterioration under imposed displacement reversals are investigated. In the experimental part, 17 reinforced concrete beam specimens were tested under constant and variable amplitude inelastic displacement cycles. The constant-amplitude tests were employed to determine the low-cycle fatigue behaviour of specimens where the imposed displacement amplitude was the major variable. A two-parameter fatigue model was...
Dicleli, Murat (Wiley, 1995-03-01)
This paper investigates the non-linear inelastic seismic response of existing single-span simply supported bridges having bearings which can remain stable and slide after their anchor bolts are ruptured. A simplified equivalent model is developed for the inelastic analysis of these single-span simply supported bridges. Non-linear inelastic time-history analyses are conducted for various acceleration inputs. It is found that narrower bridges with longer spans may have considerable sliding displacements and f...
Citation Formats
M. Dicleli, “Effect of near-fault ground motion and damper characteristics on the seismic performance of chevron braced steel frames,” EARTHQUAKE ENGINEERING & STRUCTURAL DYNAMICS, pp. 927–948, 2007, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/47959.