Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Copper(0) Nanoparticles Supported on Silica-Coated Cobalt Ferrite Magnetic Particles: Cost Effective Catalyst in the Hydrolysis of Ammonia-Borane with an Exceptional Reusability Performance
Date
2012-08-01
Author
KAYA, MURAT
Zahmakıran, Mehmet
Özkar, Saim
Volkan, Mürvet
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
73
views
0
downloads
Cite This
Herein we report the development of a new and cost-effective nanocomposite catalyst for the hydrolysis of ammonia-borane (NH3BH3), which is considered to be one of the most promising solid hydrogen carriers because of its high gravimetric hydrogen storage capacity (19.6% wt) and low molecular weight. The new catalyst system consisting of copper nanoparticles supported on magnetic SiO2/CoFe2O4 particles was reproducibly prepared by wet-impregnation of Cu(II) ions on SiO2/CoFe2O4 followed by in situ reduction of the Cu(II) ions on the surface of magnetic support during the hydrolysis of NH3BH3 and characterized by ICP-MS, XRD, XPS, TEM, HR-TEM and N-2 adsorption-desorption technique. Copper nanoparticles supported on silica coated cobalt(II) ferrite SiO2/CoFe2O4 (CuNPs@SCF) act as highly active catalyst in the hydrolysis of ammonia-borane, providing an initial turnover frequency of TOF = 2400 h(-1) at room temperature, which is not only higher than all the non-noble metal catalysts but also higher than the majority of the noble metal based homogeneous and heterogeneous catalysts employed in the same reaction.. More importantly, they were easily recovered by using a permanent magnet in the reactor wall and reused for up, to 10 recycles without losing their inherent catalytic activity significantly, which demonstrates the exceptional reusability of the CuNPs@SCF catalyst.
Subject Keywords
Copper
,
Hydrogen
,
Ammonia-Borane
,
Silica
,
Magnetic
,
Nanoparticles
URI
https://hdl.handle.net/11511/43914
Journal
ACS APPLIED MATERIALS & INTERFACES
DOI
https://doi.org/10.1021/am3005994
Collections
Department of Chemistry, Article
Suggestions
OpenMETU
Core
Cobalt ferrite supported platinum nanoparticles: Superb catalytic activity and outstanding reusability in hydrogen generation from the hydrolysis of ammonia borane
Akbayrak, Serdar; Özkar, Saim (2021-08-15)
In this work, platinum(0) nanoparticles are deposited on the surface of magnetic cobalt ferrite forming magnetically separable Pt-0/CoFe2O4 nanoparticles, which are efficient catalysts in H-2 generation from the hydrolysis of ammonia borane. Catalytic activity of Pt-0/CoFe2O4 nanoparticles decreases with the increasing platinum loading, parallel to the average particle size. Pt-0/CoFe2O4 (0.23% wt. Pt) nanoparticles have an average diameter of 2.30 +/- 0.47 nm and show an extraordinary turnover frequency of...
Nanoalumina-supported rhodium(0) nanoparticles as catalyst in hydrogen generation from the methanolysis of ammonia borane
Ozhava, Derya; Özkar, Saim (2017-10-01)
Rhodium(0) nanoparticles were in situ formed from the reduction of rhodium(II) octanoate and supported on the surface of nanoalumina yielding Rh(0)/nanoAl(2)O(3) which is highly active catalyst in hydrogen generation from the methanolysis of ammonia borane at room temperature. The kinetics of nanoparticle formation can be followed just by monitoring the volume of hydrogen gas evolved from the methanolysis of ammonia borane. The evaluation of the kinetic data gives valuable insights to the slow, continuous n...
Hydrogen generation from the hydrolysis of hydrazine-borane catalyzed by rhodium(0) nanoparticles supported on hydroxyapatite
Celik, Derya; Karahan, Senem; Zahmakiran, Mehmet; Özkar, Saim (2012-03-01)
Herein, we report the preparation and characterization of rhodium(0) nanoparticles supported on hydroxyapatite (Ca-10(OH)(2)(PO4)(6), HAP) and their catalytic use in the hydrolysis of hydrazine-borane, which attracts recent attention as promising hydrogen storage materials. Hydroxyapatite supported rhodium(0) nanoparticles were readily prepared by the hydrazine-borane reduction of rhodium(III)-exchanged hydroxyapatite in situ during the hydrolysis of hydrazine-borane at room temperature. Characterization of...
Palladium nanoparticles supported on chemically derived graphene: An efficient and reusable catalyst for the dehydrogenation of ammonia borane
Metin, Onder; Kayhan, Emine; Özkar, Saim; Schneider, Jorg J. (2012-05-01)
Chemically derived graphene (CDG) was prepared by hydrazine hydrate reduction of graphene oxide and used as support for palladium nanoparticles (Pd NPs) generated ex situ with controllable particle size and dispersion. The Pd NPs supported on CDG were well characterized by using a combination of advance analytical techniques and employed as catalyst in the dehydrogenation and hydrolysis of ammonia borane (AB) in organic solvents and aqueous solutions, respectively. Monodisperse Pd NPs of 4.5 nm were prepare...
Water soluble laurate-stabilized ruthenium(0) nanoclusters catalyst for hydrogen generation from the hydrolysis of ammonia-borane: High activity and long lifetime
DURAP, FEYYAZ; Zahmakiran, Mehmet; Özkar, Saim (2009-09-01)
The simplest amine-borane, considered as solid hydrogen storage material, ammonia-borane (H(3)NBH(3)) can release hydrogen gas upon catalytic hydrolysis under mild conditions. Herein, we report the preparation of a novel catalyst, water dispersible laurate-stabilized ruthenium(0) nanoclusters from the dimethylamine-borane reduction of ruthenium(III) chloride in sodium laurate solution at room temperature. The ruthenium nanoclusters in average size of 2.6 +/- 1.2 nm were isolated from the solution and well c...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
M. KAYA, M. Zahmakıran, S. Özkar, and M. Volkan, “Copper(0) Nanoparticles Supported on Silica-Coated Cobalt Ferrite Magnetic Particles: Cost Effective Catalyst in the Hydrolysis of Ammonia-Borane with an Exceptional Reusability Performance,”
ACS APPLIED MATERIALS & INTERFACES
, pp. 3866–3873, 2012, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/43914.