Kinetic model for alpha-tricalcium phosphate hydrolysis

2002-08-01
A mechanistic model for the kinetics of hydrolysis of alpha-tricalcium phosphate (alpha-Ca-3(PO4)(2) or alpha-TCP) to hydroxyapatite (Ca10-x(HPO4)(x)(PO4)(6-x)(OH)(2-x) or HAp) has been developed. The model is based on experimental hydrolysis rate data obtained using isothermal calorimetry. Analysis of the kinetic data according to the general kinetics models in terms of the fractional degree of reaction and time suggests the hydrolysis to be controlled by different rate-limiting mechanisms as reaction proceeds. Initially, the hydrolysis kinetics depend on the surface area of the anhydrous alpha-TCP. Subsequently, they change to a dependence on the rate of HAp product formation controlled by a nucleation and growth mechanism. The model predicts that HAp nuclei form at essentially one time and growth occurs in two dimensions, leading to a platelike morphology. The change in the reaction mechanism occurs at a fractional degree of hydrolysis, which does not change significantly with temperature in the range of 37degrees-56degreesC.
JOURNAL OF THE AMERICAN CERAMIC SOCIETY

Suggestions

PHASE-RELATIONS IN THE SYSTEM CE2O3-AL2O3 IN INERT AND REDUCING ATMOSPHERES
TAS, AC; AKINC, M (Wiley, 1994-11-01)
The 1:1 compound, CeAlO3, in the system Ce2O3-Al2O3 has been synthesized from the oxides and shown to have a perovskite-like tetragonal unit cell with the lattice parameters a = 3.763 and c = 3.792 Angstrom. A new XRD pattern is suggested for CeAlO3. This compound is shown to be stable up to 1950 degrees C. The 1:11 compound, CeAl11O18, has also been synthesized and shown to possess a magnetoplumbite-like hexagonal unit cell with the lattice parameters a = 5.558 and c = 22.012 Angstrom. An XRD pattern is su...
Synthesis and characterization of conducting graft copolymers based on oligophenols
Sahmetlioglu, Ertugrul; Arikan, Ufuk; Toppare, Levent Kamil; Yuruk, Huseyin; Mart, Hasan (Informa UK Limited, 2006-10-01)
Oligo-2-aminophenol (OAF) was synthesized with oxidative polycondensation of 2-aminophenol and hydrogen peroxide in an aqueous alkaline medium at 80 degrees C. Oligo-2-aminophenol with thiophene side groups (TOAF) was obtained by the reaction of OAF and thiophene-3-acetic acid. Graft copolymers of TOAF and pyrrole were synthesized by electrochemical polymerization in p-toluene sulfonic acid (PTSA)/water medium. Characterization of the graft copolymer (TOAF-g-Py), was carried out by combination of techniques...
Activity-corn position relations in MuCr(2)O(4)-CoCr2O4 solid solutions and stabilities of MnCr2O4 and CoCr2O4 at 1300 degrees C
Koc, N; Timucin, M (Wiley, 2005-09-01)
Phase equilibria in the system MnO-CoO-Cr2O3 were investigated at 1300 degrees C under controlled oxygen partial pressures by using the gas equilibration technique. The CoO activities in various phase assemblages of the system were measured by determining the partial pressures of oxygen in the gas phase for coexistence with metallic cobalt. The activity data revealed that at 1300 degrees C, MnO-CoO and MnCr2O4-CoCr2O4 solid solutions exhibit mild positive departures from ideal behavior. The activities in th...
Carbothermic formation of boron nitride
Aydogdu, A; Sevinc, N (Elsevier BV, 2003-01-01)
Formation of boron nitride by reaction of boric oxide with carbon and nitrogen was studied. It was found from the results of experiments conducted by holding BA-activated C mixtures under a flowing nitrogen atmosphere that formation of boron nitride was complete in 120 min at 1500 degreesC. After cleaning the reaction product from the ash of the activated carbon and from the unreacted B2O3 pure BN powder was obtained. B4C was found to exist as an intermediate species in the reaction products of the experime...
Combustion synthesis of calcium phosphate bioceramic powders
Tas, AC (Elsevier BV, 2000-12-01)
Calcium phosphate (hydroxyapatite and tri-calcium phosphate) bioceramics closely resembling, in chemical composition, those found in vivo in human bones have been synthesized by using novel synthetic body fluid solutions via the self-propagating combustion synthesis (SPCS) method. Powder characterization was performed by XRD: ICP-AES, FTIR and SEM.
Citation Formats
C. Durucan, “Kinetic model for alpha-tricalcium phosphate hydrolysis,” JOURNAL OF THE AMERICAN CERAMIC SOCIETY, pp. 2013–2018, 2002, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/35458.