Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Behavior of girder floor beam connections in prestressed concrete pedestrian bridges subjected to lateral impact loads
Date
2007-11-01
Author
Baran, Eray
French, Catherine
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
222
views
0
downloads
Cite This
Each year a large number of concrete bridges are subjected to impact by overheight vehicles or vehicles carrying overheight objects. Most bridge owners in the United States are concerned with the increasing trend of bridges impacted by overheight vehicles, thereby increasing the urgency to evaluate the resistance of bridges to lateral impact loads. The present integrated numerical and experimental study investigates the behavior of a critical connection, between girders and floor beams, in a type of bridge that is considered to be particularly vulnerable, prestressed concrete through-girder (PCTG) pedestrian bridges. PCTG pedestrian bridges comprise precast, prestressed concrete girders connected by cast-in-place, reinforced concrete floor beams and a cast-in-place deck. The deck is connected to the floor beams only, and the floor beams are joined to the girders using embedded concrete anchors. The investigation combines three-dimensional finite-element analyses with physical testing to elucidate the load-deformation characteristics of the girder-floor beam connections. A series of six girder-floor beam connection subassemblage specimens were built and tested, three of which were subjected to vertical loading, while the other three specimens had a combination of vertical and horizontal load. Three types of anchors were investigated, including two types of loop inserts and one bolt insert. The study revealed that specimen response depends upon the characteristics of the embedded concrete anchors. Deterioration of specimen load capacity was found to be associated with concrete cracking, formation of a cone breakout surface, yielding of the anchors, and fracture of the inserts. The floor beam-girder subassemblages were able to resist large displacements after attaining peak load, even though postpeak load carrying capacity was undermined in most cases.
Subject Keywords
Mechanical Engineering
,
General Materials Science
,
Mechanics of Materials
,
Civil and Structural Engineering
,
Building and Construction
URI
https://hdl.handle.net/11511/35481
Journal
Journal Of Structural Engineering-Asce
DOI
https://doi.org/10.1061/(asce)0733-9445(2007)133:11(1670)
Collections
Department of Civil Engineering, Article
Suggestions
OpenMETU
Core
Performance of a Prestressed Concrete Pedestrian Bridge System under Equivalent Static Lateral Impact Loads
Baran, Eray; French, Catherine (American Society of Civil Engineers (ASCE), 2013-08-01)
The resistance of prestressed concrete through-girder (PCTG) pedestrian bridges to lateral loads was studied in response to the increasing number of vehicular impacts in the United States. This research was motivated by the lack of reported studies analyzing the behavior of such bridges to lateral impact loads, as well as their potential vulnerability in comparison with bridges that are better able to redistribute and transfer locally applied impact loads through alternate load paths. Pedestrian bridges are...
Behavior of curved steel trapezoidal box-girders during construction
Topkaya, Cem; Frank, KH (Elsevier BV, 2004-05-01)
In recent years, steel, trapezoidal box-girders for curved highway interchanges have been used extensively. For these structural systems, the majority of the steel girder cross-sectional stresses occur during the concrete pouring sequence. This paper describes a comprehensive study on the behavior of curved girders during construction. Data collected for the current research shows significant differences between the measured and predicted quantities, particularly for later pours. An overview of the steel-co...
Composite shear stud strength at early concrete ages
Topkaya, Cem; Williamson, EB (American Society of Civil Engineers (ASCE), 2004-06-01)
Composite action between a reinforced concrete deck and steel girders is usually achieved by making use of welded headed shear studs. The mechanics of shear studs embedded in mature concrete has been investigated extensively in the past. Current literature, however, lacks experimental evidence of steel-concrete interface behavior at early concrete ages. This information is useful in understanding the behavior of bridges during construction. Current testing methods are not suitable for determining the respon...
Evaluation of the Predictive Models for Stiffness, Strength, and Deformation Capacity of RC Frames with Masonry Infill Walls
Turgay, Tahsin; Durmus, Meril Cigdem; Binici, Barış; Ozcebe, Guney (American Society of Civil Engineers (ASCE), 2014-10-01)
Buildings with masonry infill walls (MIWs) in reinforced concrete (RC) frames are commonly used all around the world. It is well known that infill walls may affect the strength, stiffness, and displacement ductility of the structural system. Different approaches have been adopted in different codes and guidelines to consider the stiffness and strength contribution of MIWs on RC frame behavior. This study compares the ability of the existing guidelines to estimate stiffness, strength, and deformability of RC...
Lifetime performance analysis of existing steel girder bridge superstructures
Akgül, Ferhat (American Society of Civil Engineers (ASCE), 2004-12-01)
A general method for lifetime performance analysis of existing steel girder bridges is presented. Only the superstructure components are considered. The formulation is established by identifying four distinct categories: limit state equations, random variables, deterministic parameters, and constant coefficients. The limit state equations are derived by strictly adhering to the load and capacity formulas and requirements set forth in AASHTO specifications. Generality is pursued by establishing parametric li...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
E. Baran and C. French, “Behavior of girder floor beam connections in prestressed concrete pedestrian bridges subjected to lateral impact loads,”
Journal Of Structural Engineering-Asce
, pp. 1670–1681, 2007, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/35481.