Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
An embryonic poly(A)-binding protein (ePAB) is expressed in mouse oocytes and early preimplantation embryos.
Date
2005-01-11
Author
Seli, E
Lalioti, MD
Flaherty, SM
Sakkas, D
Terzi Çizmecioğlu, Nihal
Steitz, JA
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
221
views
0
downloads
Cite This
Gene expression during oocyte maturation, fertilization, and early embryo development until zygotic gene activation is regulated mainly by translational activation of maternally derived mRNAs. This process requires the presence of a poly(A)-binding protein. However, the cytoplasmic somatic cell poly(A)-binding protein (PABP1) is not expressed until later in embryogenesis. We recently identified an embryonic poly(A)-binding protein (ePAB) in Xenopus. ePAB is the predominant cytoplasmic PABP in Xenopus oocytes and early embryos and prevents deadenylation of mRNAs, suggesting its importance in the regulation of gene expression during early Xenopus development. Here we report the identification of the mouse ortholog of Xenopus ePAB. The mouse ePAB gene on chromosome 2 contains 14 exons that specify an alternatively spliced mRNA encoding a protein of 608 or 561 aa with approximate to65% identity to Xenopus ePAB. Mouse ePAB mRNA is expressed in ovaries and testis but not in somatic tissues. In situ hybridization localizes ePAB RNA to oocytes and confirms its absence from surrounding somatic cells in the mouse ovary. During early development, mouse ePAB is expressed in prophase I and metaphase II oocytes and one-cell and two-cell embryos and then becomes undetectable in four-or-more-cell embryos. In contrast, PABP1 mRNA expression is minimal in oocytes and early embryos until the eight-cell stage when it increases, becoming predominant at the blastocyst stage. The expression of mouse ePAB before zygotic gene activation argues for its importance in translational activation of maternally derived mRNAs during mammalian oocyte and early preimplantation embryo development.
Subject Keywords
Multidisciplinary
URI
https://hdl.handle.net/11511/35497
Journal
Proceedings of the National Academy of Sciences of the United States of America
DOI
https://doi.org/10.1073/pnas.0408378102
Collections
Department of Biology, Article
Suggestions
OpenMETU
Core
Actin stabilizing compounds show specific biological effects due to their binding mode
Wang, Shuaijun; Crevenna, Alvaro H.; Ugur, Ilke; Marıon, Antoıne; Antes, Iris; Kazmaier, Uli; Hoyer, Maria; Lamb, Don C.; Gegenfurtner, Florian; Kliesmetes, Zane; Ziegenhain, Christoph; Enard, Wolfgang; Vollmar, Angelika; Zahler, Stefan (Springer Science and Business Media LLC, 2019-07-05)
Actin binding compounds are widely used tools in cell biology. We compare the biological and biochemical effects of miuraenamide A and jasplakinolide, a structurally related prototypic actin stabilizer. Though both compounds have similar effects on cytoskeletal morphology and proliferation, they affect migration and transcription in a distinctive manner, as shown by a transcriptome approach in endothelial cells. In vitro, miuraenamide A acts as an actin nucleating, F-actin polymerizing and stabilizing compo...
Temporal changes in the gene expression heterogeneity during brain development and aging
Isildak, Ulas; Somel, Mehmet; Thornton, Janet M.; Donertas, Handan Melike (Springer Science and Business Media LLC, 2020-03-01)
Cells in largely non-mitotic tissues such as the brain are prone to stochastic (epi-)genetic alterations that may cause increased variability between cells and individuals over time. Although increased interindividual heterogeneity in gene expression was previously reported, whether this process starts during development or if it is restricted to the aging period has not yet been studied. The regulatory dynamics and functional significance of putative aging-related heterogeneity are also unknown. Here we ad...
Building Dicer1 regulation network of mouse liver hepatocytes
Ünsal, Şeyma; Beyge, Mahmut; Aydın Son, Yeşim (2012-06-29)
RNA induced gene silencing complex (RISC) has a role in many cellular processes which includes regulation of gene expression, immune response, cell differentiation and embryonic development. Dicer protein is a key regulator of these processes. Dicer1 specifically has central role in maturation of RISC substrate RNA and RISC assembly in mouse. Here the results of a microarray study that investigates the molecular level changes in dicer1 knockout mouse liver hepatocytes is re-analysed and the differentially r...
Nanoparticle self-assembly at the interface of liquid crystal droplets
Rahimi, Mohammad; Roberts, Tyler F; Armas-Pérez, Julio C; Wang, Xiaoguang; Büküşoğlu, Emre; Abbott, Nicholas L; de Pablo, Juan Jose (Proceedings of the National Academy of Sciences, 2015-04-28)
Nanoparticles adsorbed at the interface of nematic liquid crystals are known to form ordered structures whose morphology depends on the orientation of the underlying nematic field. The origin of such structures is believed to result from an interplay between the liquid crystal orientation at the particles' surface, the orientation at the liquid crystal's air interface, and the bulk elasticity of the underlying liquid crystal. In this work, we consider nanoparticle assembly at the interface of nematic drople...
Functional characterization of microrna-125b expression in MCF7 breast cancer cell line
Tuna, Serkan; Erson Bensan, Ayşe Elif; Department of Biology (2010)
microRNA dependent gene expression regulation has roles in diverse processes such as differentiation, proliferation and apoptosis. Therefore, deregulated miRNA expression has functional importance for various diseases, including cancer. miR-125b is among the commonly downregulated miRNAs in breast cancer cells . Therefore we aimed to characterize the effects of miR-125b expression in MCF7 breast cancer cell line (BCCL) to better understand its roles in tumorigenesis. Here, we investigated mir-125 family mem...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
E. Seli, M. Lalioti, S. Flaherty, D. Sakkas, N. Terzi Çizmecioğlu, and J. Steitz, “An embryonic poly(A)-binding protein (ePAB) is expressed in mouse oocytes and early preimplantation embryos.,”
Proceedings of the National Academy of Sciences of the United States of America
, pp. 367–72, 2005, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/35497.