Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Effect of Foundation Soil Stiffness on the Seismic Performance of Integral Bridges
Date
2011-05-01
Author
Dicleli, Murat
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
231
views
0
downloads
Cite This
In this study, the effect of foundation soil stiffness on the seismic performance of integral bridges (IBs) is investigated. For this purpose, nonlinear structural models of a two-span TB with four different foundation soil stiffness types (loose, medium, medium-dense and dense sands) are built. In the nonlinear structural models, nonlinear soil structure interaction including free-field effects is considered. Then, the nonlinear time history analyses of the TB models are conducted using a set of ground motions with various intensities. The analyses results reveal that foundation soil stiffness has significant effects on the seismic performance of IBs, particularly under large-intensity earthquakes. Stiffer foundation soils are found to produce smaller maximum absolute displacement in the deck of IBs, especially in the case of large-intensity earthquakes. This is mainly due to the larger foundation flexibility in the case of soft soil conditions producing larger deck displacements. For the bearings, however, because of their large flexibility, the difference between the bearing displacements for various foundation soil stiffness conditions is negligible. Furthermore, for IBs built on soft soil conditions, the pier columns and steel H piles are observed to experience less damage (better performance) in the case of a potential earthquake.
Subject Keywords
Civil and Structural Engineering
,
Building and Construction
URI
https://hdl.handle.net/11511/35505
Journal
STRUCTURAL ENGINEERING INTERNATIONAL
DOI
https://doi.org/10.2749/101686611x12994961034255
Collections
Department of Engineering Sciences, Article
Suggestions
OpenMETU
Core
Effect of soil and substructure properties on live-load distribution in integral abutment bridges
Dicleli, Murat (American Society of Civil Engineers (ASCE), 2008-09-01)
This study is aimed at investigating the effect of soil-structure interaction and substructure properties at the abutments on the distribution of live-load effects in integral abutment bridge (IAB) components. For this purpose, numerous 3D and corresponding 2D structural models of typical IABs are built and analyzed under AASHTO live-load. In the analyses, the effect of various geotechnical and substructure properties such as foundation soil stiffness, considering and neglecting the effect of backfill, back...
Effect of Shear Wall Area to Floor Area Ratio on the Seismic Behavior of Reinforced Concrete Buildings
Burak Bakır, Burcu (American Society of Civil Engineers (ASCE), 2013-11-01)
An analytical study is performed to evaluate the effect of shear wall area to floor area ratio on the seismic behavior of midrise RC structures. For this purpose, 24 midrise building models that have five and eight stories and shear wall ratios ranging between 0.51 and 2.17% in both directions are generated. Then, the behavior of these building models under earthquake loading is examined by carrying out nonlinear time history analyses. In the analyses, seven different ground motion records are applied to th...
Effect of shear walls on the behavior of reinforced concrete buildings under earthquake loading
Çömlekoğlu, Hakkı Gürhan; Burak Bakır, Burcu; Department of Civil Engineering (2009)
An analytical study was performed to evaluate the effect of shear wall ratio on the dynamic behavior of mid-rise reinforced concrete structures. The primary aim of this study is to examine the influence of shear wall area to floor area ratio on the dynamic performance of a building. Besides, the effect of shear wall configuration and area of existing columns on the seismic performance of the buildings were also investigated. For this purpose, twenty four mid-rise building models that have five and eight sto...
Effect of soil-bridge interaction on the magnitude of internal forces in integral abutment bridge components due to live load effects
Dicleli, Murat (Elsevier BV, 2010-01-01)
In this study, the effect of soil-bridge interaction on the magnitude of the internal forces in integral abutment bridge (IAB) components due to live load effects is studied. For this purpose, structural models of typical IABs are built by including and excluding the effect of backfill and foundation soil. Analyses of the models are then conducted under an AASHTO live load. In the analyses, the effects of the backfill and foundation soil on the magnitude of the internal forces in IAB components are studied ...
Effect of cyclic thermal loading on the performance of steel H-piles in integral bridges with stub-abutments
Dicleli, Murat (Elsevier BV, 2004-02-01)
In this paper, analytical equations are developed to estimate the lateral displacement capacity of steel-H piles in integral bridges with stub abutments subjected to cyclic thermal variations. First, steel H piles that are capable of sustaining large plastic deformations are identified based on their local buckling strength. The normalized moment-curvature relationships of these piles are then obtained for various axial load levels. Next, a low-cycle fatigue damage model is employed to determine the maximum...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
M. Dicleli, “Effect of Foundation Soil Stiffness on the Seismic Performance of Integral Bridges,”
STRUCTURAL ENGINEERING INTERNATIONAL
, pp. 162–168, 2011, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/35505.