Effect of shear walls on the behavior of reinforced concrete buildings under earthquake loading

Download
2009
Çömlekoğlu, Hakkı Gürhan
An analytical study was performed to evaluate the effect of shear wall ratio on the dynamic behavior of mid-rise reinforced concrete structures. The primary aim of this study is to examine the influence of shear wall area to floor area ratio on the dynamic performance of a building. Besides, the effect of shear wall configuration and area of existing columns on the seismic performance of the buildings were also investigated. For this purpose, twenty four mid-rise building models that have five and eight stories and shear wall ratios ranging between 0.51 and 2.17 percent in both directions were generated. These building models were examined by carrying out nonlinear time-history analyses using PERFORM 3D. The analytical model used in this study was verified by comparing the analytical results with the experimental results of a full-scale seven-story reinforced concrete shear wall building that was tested for U.S.-Japan Cooperative Research Program in 1981. In the analyses, seven different ground motion time histories were used and obtained data was averaged and utilized in the evaluation of the seismic performance. Main parameters affecting the overall performance were taken as roof and interstory drifts, their distribution throughout the structure and the base shear characteristics. The analytical results indicated that at least 1.0 percent shear wall ratio should be provided in the design of mid-rise buildings, in order to control observed drift. In addition; when the shear wall ratio increased beyond 1.5 percent, it was observed that the improvement of the seismic performance is not as significant.

Suggestions

Effect of soil-bridge interaction on the magnitude of internal forces in integral abutment bridge components due to live load effects
Dicleli, Murat (Elsevier BV, 2010-01-01)
In this study, the effect of soil-bridge interaction on the magnitude of the internal forces in integral abutment bridge (IAB) components due to live load effects is studied. For this purpose, structural models of typical IABs are built by including and excluding the effect of backfill and foundation soil. Analyses of the models are then conducted under an AASHTO live load. In the analyses, the effects of the backfill and foundation soil on the magnitude of the internal forces in IAB components are studied ...
Effect of foundation rigidity on contact stress distribution in soils with variable strength / deformation properties
Çekinmez, Zeynep; Erol, Orhan; Department of Civil Engineering (2010)
In this study, a typical mat foundation and structural loading pattern is considered. Three dimensional finite element analyses, PLAXIS 3D, is performed to determine the soil / foundation contact stress distribution, settlement distribution, distribution of modulus of subgrade reaction as a function of column spacing, stiffness of the soil and thickness of the foundation. A parametric study is performed to demonstrate the dependence of those distributions on various parameters. Moreover, a relationship betw...
Effect of Shear Wall Area to Floor Area Ratio on the Seismic Behavior of Reinforced Concrete Buildings
Burak Bakır, Burcu (American Society of Civil Engineers (ASCE), 2013-11-01)
An analytical study is performed to evaluate the effect of shear wall area to floor area ratio on the seismic behavior of midrise RC structures. For this purpose, 24 midrise building models that have five and eight stories and shear wall ratios ranging between 0.51 and 2.17% in both directions are generated. Then, the behavior of these building models under earthquake loading is examined by carrying out nonlinear time history analyses. In the analyses, seven different ground motion records are applied to th...
Effect of Foundation Soil Stiffness on the Seismic Performance of Integral Bridges
Dicleli, Murat (Informa UK Limited, 2011-05-01)
In this study, the effect of foundation soil stiffness on the seismic performance of integral bridges (IBs) is investigated. For this purpose, nonlinear structural models of a two-span TB with four different foundation soil stiffness types (loose, medium, medium-dense and dense sands) are built. In the nonlinear structural models, nonlinear soil structure interaction including free-field effects is considered. Then, the nonlinear time history analyses of the TB models are conducted using a set of ground mot...
An experimental study into bearing of rigid piled rafts under vertical loads
Türkmen, Haydar Kürşat; Ergun, Mehmet Ufuk; Department of Civil Engineering (2008)
In this study, the load bearing behavior of piled raft foundations is investigated performing laboratory and field tests. Piled raft foundation of a multi storey building was also instrumented and monitored in order to study the load sharing mechanism of piled raft foundations. A small reinforced concrete piled raft of 2.3 m square supported by four mini piles at the corners was loaded and contribution of the raft support up to 41 % of the total load was observed. The soil was stiff fissured Ankara clay wit...
Citation Formats
H. G. Çömlekoğlu, “Effect of shear walls on the behavior of reinforced concrete buildings under earthquake loading,” M.S. - Master of Science, Middle East Technical University, 2009.